Самодельный реле-регулятор Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла. Регулятор напряжения мотоцикла


Реле-регулятор напряжения своими руками. - Sevradio.com

Выпрямитель-регулятор напряжения для скутера, мотоцикла и лодочного мотора своими руками.

ССЫЛКА: НОВАЯ ВЕРСИЯ РЕГУЛЯТОРА НАПРЯЖЕНИЯ ДЛЯ СКУТЕРА, МОТОЦИКЛА И ЛОДОЧНОГО МОТОРА.

В статье приведена схема и пример изготовления выпрямителя-регулятора на мото технику.Данный выпрямитель-регулятор можно использовать на всех моторах, где используется генератор на постоянных магнитах.Регулятор рассчитан на ток 35 А.

Принципиальная схема регулятораСхема состоит из трехфазного диодного моста 36MT120, трех симисторов BTA26, микросхемы ULN2003, стабилитрона 14В 0.5Вт, четырех резисторов 300 Ом 0.5Вт и конденсатора 1000пФ.Для изготовления понадобится радиатор типа HS 145-100 100х100х26 мм, крепеж и термопаста. Радиатор подобран таким образом, чтобы обеспечить хороший теплоотвод.Диаметр проводов  - 2.5 мм.В радиаторе нужно высверлить отверстия и нарезать резьбу, для крепления диодного моста и симисторов.На основе данной схемы можно изготовить 2-фазный выпрямитель- регулятор.Для этого нужно удалить из схемы несколько элементов.

В этом случае, вместо 3-х фазного диодного моста нужно использовать однофазный диодный  мост.Для более мощного выпрямителя регулятора можно установить два однофазных моста.Фото собранного 2-х фазного выпрямителя-регулятора с двумя однофазными диодными мостами.

После проверки остается только залить эпоксидной смолой.Схема отличается надёжностью, простотой в изготовлении и низкой ценой.

Если нужна помощь в изготовлении данного регулятора пишите на E-mail Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Вопросы и предложения оставляйте в комментариях.

ССЫЛКА НА НОВУЮ ВЕРСИЮ РЕГУЛЯТОРА НАПРЯЖЕНИЯ ДЛЯ СКУТЕРА, МОТОЦИКЛА И ЛОДОЧНОГО МОТОРА.

sevradio.com

Самодельный трехфазный выпрямитель-регулятор для авто или мотоцикла

Автомобильный регулятор не нуждается в выпрямителе, так как в корпус генератора машины уже вставлены выпрямительные диоды. У мотоциклетных регуляторов есть выпрямитель, поскольку генераторы мотоциклов не оборудуются диодами, дабы иметь меньшие размеры.

На многих машинах, но не на всех, регулятор управляет напряжением по обмотке возбуждения генератора. Мотоциклетные регуляторы обычно стабилизируют напряжение на силовых обмотках генератора. Есть старые японские, американские мотоциклы с генераторами автомобильного типа, но их совсем немного.

Сейчас нас интересует именно мощный выпрямитель-регулятор мотоциклетного типа, который может пропускать большие токи. А на мотоциклах, особенно на японских кубатурных, очень большие токи — до 15 А. Поэтому о компенсационном регуляторе, типа КРЕН, и речи быть не может. Стабилизатор на транзисторе тоже не подойдет. Конечно, можно собрать импульсный стабилизатор на полевом транзисторе, который даже перегреваться не будет, если поставить его на хороший теплоотвод. Только вот работать он будет импульсами, на выходе будет от 11 до 15 В, а в среднем 13 В.

Производители современных мотоциклов ставят шунтирующие регуляторы — отлично работающие устройства, но невечные. У них роль шунта, частично забирающего ток от нагрузки, выполняет тиристор. Напряжение снижается до нормы за счет отводимого тока, который переходит в тепло на тиристорах и рассеивается.

Микросхема ULN2003А нижнего ключа понадобилась, чтобы развязать между собой две части схемы: слаботочную управления со стабилитроном и силовую шунтирующую на симисторах. Полуваттному стабилитрону в стеклянном корпусе, чтобы начать работать, нужен ток минимум 5 мА, а если ток выше 30 мА, то он перегорает. Двенадцатиамперному тиристору, чтобы открыться нужно 15 мА, а трём тиристорам — 45 мА. Симисторам, которые применены в схеме, нужен ещё больший ток — от 30 мА каждому, всем трём — 90 мА.

В этой схеме нужны именно симисторы, тиристоры не будут работать на такой частоте, на которую настроена схема управления.

Мощный стабилитрон с гайкой в металлическом корпусе, выдерживающий 600 мА, ставить нельзя, его не можно настроить на весь диапазон частоты вращения коленчатого вала мотоцикла. Дело в том, что на мотоцикле очень большой разброс напряжения от 14 В на холостых до 60 В на полном газу, и если подобрать гасящий резистор стабилитрона для работы на верхнем пределе напряжения, то стабилитрон не сможет регулировать напряжение на холостом ходу. У восьмиваттного стабилитрона слишком низкий предел чувствительности по току — только с 25 мА.

Микросхема развязки ULN2003А и её аналог японская TD62003P выдерживает ток до 500 мА. Такие микросхемы сейчас можно найти везде: в старых сканерах, принтерах, поломанных автосигнализациях, стиральных машинах.

Симисторы BTA26, BTA12 имеют одно замечательное преимущество — их можно прикрутить все вместе на один алюминиевый корпус. Не надо использовать для каждого изоляционную подкладку, потому что их алюминиевые теплоотдводы полностью изолированы от внутренней структуры. Симисторы BTA26 на 26 А использовать не обязательно, для генератора дающего 500 Вт достаточно шунтов по 10 А.

И напоследок, пару слов о выпрямительных диодах и корпусе устройства. Для движка имеющего кубатуру более литра, ищите 30-амперные диоды. Если объем двигателя до 400 кубов, то достаточно 10-амперных диодов.

Корпус собираемого выпрямителя-регулятора одновременно является также радиатором охлаждения для выпрямительных диодов и симисторов. Используйте теплопроводящую пасту, прикручивая и устанавливая эти силовые элементы. Корпус от старого нерабочего регулятора тоже можно использовать, если получится засунуть в него чужеродные компоненты самоделки. А вообще, чем больше корпус регулятора, тем лучше он будет работать.

 

Автор: Виталий Петрович, Украина Лисичанск.

 

 

volt-index.ru

Что такое реле-регулятор напряжения мопедов Viper, Delta, Alfa

 

Так как сайт я создавал всесторонним то хочу уделить немного времени китайским мопедам, точнее сегодня затронем реле-регулятор напряжения мопедов Viper, Delta, Alfa. Нашел соответствущую инфу и хочу поделиться с вами.

Проводка китайских мопедов Viper, Delta, Alfa весьма интересна. Зажигание идет отдельно, освещение отдельно, что аналогично и во многих других скутерах и мотоциклах. Но само освещение очень запутано. Мы имеем две ветки освещения, одна это электроэнергия генератора, другая – аккумулятора. Одновременно сам генератор питает и аккумулятор. И вот чтобы эти две проводки соединить, используется реле-регулятор напряжения.

Предназначен он для выпрямления напряжения и стабилизации его, чтобы на аккумулятор и освещение не поступал ток больше обычного (помните, как горели лампочки в старых мотоциклах, все потому, что там не было стабилизатора). Это главная задача данного реле-регулятора напряжения. И если посмотреть на количество проводов такого реле-регулятора, мы видим их четыре. Один, зеленый, это масса (в скутерах часто масса зеленая), другой – красный, он идет на аккумуляторную батарею. Третий и четвертый идет с генератора. И тут можно запутаться. Каждый провод идет с напряжением 12 В, но если всмотреться в структуру генератора, понятно, что на одном чуть меньшее напряжение, это сделано ради относительности, чтобы реле могло сравнивать два напряжения. Здесь важно не спутать провода, так как в одних скутерах обозначены они белым и желтым цветами, а в иных идут два белых. Но они не одинаковые, путать их нельзя.

Кстати, если смотреть проводку в мопеде Viper Active, тут реле-регулятор имеет вместо белого розовый провод. Поэтому запомните, при сопоставлении проводов или иных реле-регуляторов, белый равнозначных розовому. Есть и другие реле-регуляторы напряжения, где цвета еще более изменены, но про это поподробнее позже.

Итак, объяснили цель реле регулятора. Реле-регуляторы напряжения мопедов Viper, Alfa, Delta взаимозаменяемы. Их можно спокойно менять, притом к мопеду Viper запасные части тяжело найти и тут многим придется взять реле-регулятор напряжения именно от скутера Alfa или Delta, так как «родимого» не найти. Разница тут будет в соединениях, придется перепаивать, и в том, что уже упоминали, в Viper вместо белого цвета часто используют розовый.

Аналогично и генераторы можно менять.  Разница между ними в количестве намотанных проводов и в цветах. Также соединение отличается при выходе проводов, поэтому тут придется перепаивать или просто соединять без «мамы-папы».

В мопедах Viper реле-регулятор напряжения находится под сидением. Чтобы не спутать его с другим элементом проводки, ищем запчасть в ребрами, так как реле-регулятор требует охлаждения и на металлическом корпусе они обязательно будут. А вот размеры могут быть разные. Данное реле очень похоже на коммутатор мотоциклов Минск или Восход. На этом пока все….

источник Блог-Мото. ру

mmoto.tk

Регулятор напряжения, самодельный.Мастерская Pit_Stop | Мастерская Pit_Stop

Приветствую всех! “Полетел” у меня как то регулятор напряжения(Не Реле-регулятор, не путайте) на китайском 4 тактнике, покупка нового не планировалась, так как штатный РН на всех 4т говно, полез в интернет искать схему. Долго искать не пришлось, нашел очень простой и дешевый вариант: шунтирующий РН. Но для правильной работы нужно было разбирать генератор и отсоединять провод от массы, и выводить его отдельным проводом.. Ну да ладно, дальше объяснять я не буду, ибо не каждый шарит в электрике. В китайских 4т как правило стоят вот такие РН: Схема говно, КПД говно, ресурс говно. Собираем вот эту(Для однофазного генератора, в нашем случае): Для трехфазного:   У нас есть два варианта подключения самодельного РН, тянуть не буду и расскажу что да как: Первый вариант(с переделкой генератора): 1) Разбираем генератор, снимает статор с двигателя и вот что мы видим: Важно: Где написано “Масса ее нужно отпаять” припаиваем отдельный провод на обмотку и выводим наружу, это будет один конец обмотки. Вторым концом будет белый провод Все, сделали, собираем генератор обратно. Получиться у нас должно вот так: То есть с генератора у нас приходят два провода(Вообще то их будет три, нам же будет нужны два). Расписывать подключение РН дальше не буду, покажу лучше рисунок: Готово, осталось подключить желтый провод от старого РН на “+” аккумулятора. На это первый вариант переделки закончен. Теперь наша борт. сеть имеет постоянное напряжение.

pitstopsaki.com

Самодельный реле-регулятор Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла

Самодельный реле-регулятор

Как я делал Реле-Регулятор (Реле зарядки) для мотоцикла.Для начала отмечу, что нижеследующий текст является популистским и предназначен для людей, слабо разбирающихся в электронике, поэтому изобилует не совсем корректными сравнениями и упрощениями. Не надо тыкать мне в лицо учебником электротехники и учить меня законам Кирхгофа. Началось все с того, что ребята из дружественного мото-сервиса попросили меня срочно решить "проблемку с РР". Отказать ребятам было нельзя - свои, и я принялся изучать вопрос. Сначала выяснилось, что мотоциклетное РР - это совсем не то, что автомобильное. Отличий два и все они очень серьёзны. 1) Авто - это стабилизатор.Мото - это выпрямитель + стабилизатор .2) Авто - регулирует напряжение на обмотке возбуждения генератора .Мото - регулирует выходное напряжение генератора .Есть мотоциклы с генераторами автомобильного типа, но их немного.Вот тут надо сделать небольшое отступление на тему "что такое сила тока, напряжение, и стабилизатор напряжения". Электрический ток, как известно из школьного курса физики, это "направленное движение электронов". Вдаваться в подробности сейчас не будем, важно уяснить главное - у электрического тока есть множество параметров, но нам наиболее важны два из них - сила тока и напряжение. Ток измеряется в Амперах, а напряжение измеряется в Вольтах. Чтобы понять что это такое, представьте, что ваш провод это канал, а ток - вода текущая по нему. Так вот сила тока это скорость потока воды, а напряжение - уровень воды в канале. Для понимания дальнейшего текста этого хватит. Теперь о стабилизаторах. Заморачиваться на выпрямителях мы пока не будем - диод он диод и есть. Задача любого стабилизатора напряжения - получить напряжение, понизить его до заданного уровня и удерживать на этом уровне. По принципу действия стабилизаторы делятся на импульсные, линейные и шунтирующие. Шунтирующий стабилизатор "пускает лишнее напряжение мимо потребителя". Простейший шунтирующий стабилизатор собирается из двух деталей - резистора и стабилитрона. Стабилитрон, это такой забавный штук, который, когда напряжение меньше чем нужно, прикидывается что его (стабилитрона) нет (то есть якобы провод оборван), а когда напряжение больше, чем нужно, прикидывается проволочкой (то есть начинает свободно проводить ток).  Представьте себе клапан с пружиной, вот принцип тот же. Работает это так. Вот напряжение, меньше чем нужно, стабилитрон ток не проводит, весь ток уходит потребителю. Воды мало, клапан закрыт. Вот напряжение почему-то повысилось и стало больше чем нужно. Стабилитрон начинает проводить ток, и все лишнее "проваливается" мимо потребителя через стабилитрон на массу. Воды много, клапан открылся и слил лишнюю воду. Таким образом, наше напряжение, наш "уровень воды" все время находится примерно на одном значении. Все бы ничего, но не бывает стабилитронов на большие токи. Этот клапан может быть только маленького диаметра. Поэтому сделать стабилизатор для большой силы тока только на стабилитроне - невозможно. Как с этим справляются расскажу позже. Линейный стабилизатор действует по принципу: "при повышении напряжения ему создаются дополнительные трудности для прохождения". Лучшее сравнение - унитазный бачок. Уровень в бачке маленький - клапан открыт - вода наливается, уровень поднимается - поплавок тащит вверх, клапан закрывается, отверстие всё уже, уже, уже.... Уровень достиг нужного - клапан закрылся. Спустили воду - уровень упал - вода полилась, и всё по новой. Только быстро. Приделываем к нашему стабилитрону транзистор. Транзистор это и есть тот самый клапан в бачке. Напряжение маленькое - стабилитрон отключен (говорится "закрыт") - ток открывает транзистор - ток идет через транзистор к потребителю, напряжение повысилось - стабилитрон открылся - ток слился на массу - транзистор открывать уже нечем - он закрылся - отключил источник от потребителя. Ваша любимая "КРЕНка" и есть такой вот линейный стабилизатор, только схема внутри нее посложнее. И все бы ничего но, сам принцип линейного стабилизатора подразумевает "преобразование лишнего тока в тепло". Шунтирующий стабилизатор "пропускает через себя только лишнее". А линейный - всё. Поэтому греется он гораздо больше. И если заставить его стабилизировать большие токи, то греться он будет быстрее чем остывать. И быстро сгорит. И никакие радиаторы не помогут. А в мотоциклах очень большие токи (я говорю о японцах).  Поэтому тот кто советует "сделать РР для мотоцикла на КРЕНке" - бредит. Импульсный стабилизатор действует по похожему принципу, только у него нет промежуточных состояний. Он либо подключает, либо отключает источник от потребителя. Подробности в википедии. Теперь вернёмся к нашим мотоциклам. Итак для начала я попробовал собрать классический линейный стабилизатор. Да, да, я наступил на все грабли, на которые можно было наступить. 20-ти амперный тошибовский транзистор шарахнул так, что слышно было на улице. Тогда вместо классического "биполярного" транзистора я применил так называемый "полевой". Полевые транзисторы свободно оперируют большими токами не особо при этом нагреваясь. Моя первая схема имела следующий вид.  Транзистор VT0 выполняет функцию "чем больше напряжение питания, тем меньше напряжение он выдаёт", микросхема DA1 - "дёргает напряжение, управляющее полевым транзистором, чем меньше напряжение на входе, тем реже дёргает" микросхема DA2 - усиливает напряжение, управляющее полевым тразистором, а то ему с DA1 мало, ну а полевой транзистор VT1 уже выполняет роль того самого клапана в бачке унитаза и питает весь мотоцикл. И ничего. Не перегревается. Эту схему я изготовил в единственном экземпляре, и она работала. О дальнейшей ее судьбе мне ничего не известно. Но судя по тому, что рекламаций мне не высказали, наверно работала она удовлетворительно. Однако это получается импульсный стабилизатор. И у него есть главный недостаток импульсного стабилизатора - большие пульсации. Грубо говоря, напряжение на его выходе не 13 вольт, как надо, а "то много, то мало, а в среднем то что надо". Если мой друг Вася выпил при мне две бутылки пива, а мне не дал ни одной, то теоретически, мы вместе выпили по бутылке пива каждый, а практически Васе пора бить морду. Я показал эту схему лишь для того, чтобы обозначить "этапы большого пути". ^ Именно из-за пульсаций. Мой коллега предложил аналогичную схему с меньшим количеством деталей, но работающую по тому же принципу. Её тоже сделали. И она тоже работала. Но и это импульсный стабилизатор со всеми своими пульсациями, поэтому от этой схемы так же отказались. Что ж, я стал искать дальше. Очень скоро я обнаружил, что производители японских мотоциклов используют шунтирующие стабилизаторы, но ревностно хранят тайну их устройства. Вот все что мне удалось найти, листая официальную документацию. Содержимое "Integrated Circuit" остаётся загадкой. Однако главный принцип ясен - роль шунтирующего стабилизатора (то есть "клапана, сливающего лишнюю воду"), выполняет деталь под названием "тиристор". Это мощный электронный "клапан", который открывается, если на его управляющий контакт пустить ток, а закрывается когда ток через него падает до нуля(почти). Именно этим и занимается Integrated Circuit, осталось додуматься что же у него внутри? Поискав еще, я обнаружил, что не один я заморачиваюсь этой проблемой, и, в общем повторяю путь других людей. Вот только большинство людей остановились на одном и том же этапе - прицепили к тиристору стабилитрон. Попутно изыскатели еще и наделали других ошибок. Так что я продолжаю показывать схемы, которые собирать не надо : В этой схеме к стабилитрону зачем-то прилеплен конденсатор большой ёмкости. Конденсатор большой ёмкости замедляет процесс "переключения напряжения туда-сюда", в линейном стабилизаторе он нужен, здесь же он только мешает стабилитрону нормально работать. Кроме того в этой схеме есть та же проблема, что и в следующей. В этой схеме на первый взгляд все неплохо. Но тут уже начинается физика с математикой. Как я уже говорил раньше "стабилитрон это клапан который не может быть слишком большим". Добавлю: слишком маленьким тоже. То есть - вот у вас стабилитрон который должен открываться при напряжении 13 вольт. Но кроме напряжения у нас есть понятие силы тока. Так вот у любого стабилитрона есть минимальный ток, меньше которого он еще не работает, и максимальный ток, больше которого он уже горит. Такой же параметр есть и у тиристора. И они не совпадают. Среднестатистический стабилитрон начинает работать с 5-ти миллиампер и сгорает, если ток выше 30-ти миллиампер. А тиристору, чтоб открыться нужно миллиампер 15. Одному. Но генератор мотоцикла трёхфазный - выдаёт ток с трёх точек. Поэтому тиристоров-то у нас три! А в этой схеме вообще применены "более другие клапана" под названием "симистор". Симистору, чтоб открыться, в зависимости от модели, нужно от 30-ти до 70-ти миллиампер. Одному. Дальше все зависит от резистора под стабилитроном - если он маленький - стабилитрон сгорит. Если большой - тиристоры не будут нормально открываться. Есть стабилитроны которые держат до 100 миллиампер. Но они начинают работать только с 50-ти. Дело в том, что мотоциклетный генератор выдаёт очень большой разброс напряжений. На холостых это вольт 10, зато на полном газу - 60 вольт не предел. Вспоминаем закон ома "чем больше напряжение, тем больше сила тока". Считаем. 10 вольт генератора делим на 330 ом резистора - получаем 30 миллиампер тока. Обычный стабилитрон уже на пределе. Мощный еще даже не приготовился работать. 60 вольт генератора делим на те же 330 ом - получаем 180 миллиампер. Оно конечно, тиристоры сразу же, за микросекунду "уронят" напряжение обратно, но все же... все же... Может увеличить сопротивление ? Давайте попробуем. 60 / 1200 = 50 миллиампер. Вроде нормально. Но  10 / 1200 = ? То-то и оно. Кроме того в этой схеме есть лишние детали. Следующую схему помещаю просто для коллекции - в ней та же проблема. К тому же на ней честно написано "Не для сборки !" А вот эта схема на первый взгляд лишена всех вышеперечисленных недостатков.  Тиристору надо 20 миллиампер ? Стабилитрон работает в разбросе 5-30?  Пожалуйста - каждому тиристору свой стабилитрон. Все довольны. Но только вот какая засада - даже если детали сделаны на одном заводе, в один день и на одном станке, они все равно чуть-чуть разные. Вы купите три стабилитрона на 13 вольт, а реально получите один на 12.9 второй на 13 третий на 13.1 вольт. Та же история будет с резисторами - их сопротивление будет отличаться ом на 5-10 в разные стороны. Кроме того генератор изготовлен тоже людьми. И поэтому выдает не абсолютно одинаковые напряжения на каждой точке а чуть-чуть да разные. В итоге какой-то из трёх стабилитронов будет открываться чуть раньше остальных. И открывать тиристор. И на этот тиристор ляжет основная нагрузка. Большая часть "лишнего" напряжения будет "сливаться" через один тиристор и он быстро сдохнет от перенагрузки. То есть эта схема вполне работоспособна при условии максимальной одинаковости деталей. Иначе она будет сильно греться и быстро сгорит. Делаем вывод - стабилитрон должен быть один, общий, и рулить всеми тремя тиристорами одновременно, но между ним и тиристорами должно быть что-то еще, усиливающее ток. Через некоторое время я нашел вот эту схему. В принципе ее можно делать. Она будет работать как надо. Но я ее делать не стал. Я перфекционист. Транзисторы, предлагаемые тут, держат ток 100 миллиампер, причём тиристорами-симисторами управляет только один из них - правый - Q2. Если использовать симисторы - 90 миллиампер "съедаться" ими, еще немного уходит на взаимодействие со вторым транзистором, сколько остаётся запаса? Не люблю я так, чтоб впритык. А если взять транзисторы по мощнее, то стабилитрон их "не раскачает" как следует. Опять же - деталей в схеме много, паять ее долго и муторно. Надо двигаться дальше. Надо сказать что тогда я много спорил с автором одной из выше расположенных схем - Dingosobak-ой именно на счёт стабилитрона, и вот я, плюнув на всё, начинаю разрисовывать свой собственный вариант, но тут, Dingosobaka присылает мне схему которую получил от GogiII  Здесь все нормально, за исключением некоторых номиналов резисторов - резисторы R1 и R2 надо уменьшить килоОМ так до трёх, а то на опять-таки многострадальный стабилитрон идёт слишком маленький ток. (Схема требует пересчета многих номиналов, но ввиду её невостребованности делать это никто не собирается - поэтому относитесь к ней как к экспонату в музее). В этой схеме маленький стабилитрон "качает" маленький транзистор, маленький транзистор "качает" транзистор побольше, а большой транзистор "рулит" мощными симисторами - он свободно держит ток в 1000 миллиампер. То есть 1 ампер. Вот это я называю "запас" ! К тому времени схем накопилось много и надо было их как-то друг от друга отличать. Этой схеме я присвоил название исходная . Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. На этом бы успокоиться, но - нет. Схема-то, для тех, кто "не в теме", сложная. И я стал искать пути упростить изготовление схемы без потери функциональности. Сначала я вознамерился приспособить автомобильное РР к мотоциклу. Исходил я из того что автомобильное РР по сути выполняет ту же функцию, что и Integrated Circuit, с той лишь разницей, что автомобильное РР управляет обмоткой возбуждения, а мотоциклетное - тиристорами-симисторами. Вот что в итоге у меня получилось: Сначала собираем блок тиристоров-симисторов. Затем берем автомобильное РР, выкусываем детальки, зачёркнутые крестиками, и впаиваем новые, отмеченные синим. Внимание ! Нужно реле зарядки под названием 121.3702 . Всяческие 121.3702 -01 , 121.3702 -02 и 121.3702 -03 не годятся ! В зависимости от типа применяемых тиристоров-симисторов придётся подобрать тот резистор, что справа (как считать-подбирать резистор написано в конце статьи). По сути, мы просто собираем предыдущую схему GogiII-Dingosobaka, только с минимальными трудозатратами и максимальным использованием готовых изделий. Настроение было игривое, поэтому эта схема получила название брутальная .  Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Дальше я стал делать ту же схему но задался целью найти готовый Integrated Circuit не в виде "РР от жигулей", а в виде готовой законченной микросхемы. И нашёл. Аж три штуки. Схема приобрела вот такой вид. За красоту и аккуратность схема получила название гламурная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но тут-то и возник парадокс. Почти у каждого из вас есть дома такая микросхема. В музыкальном центре. Она управляет светодиодными индикаторами. Но кто-нибудь хоть раз видел магнитофон у которого сдох светодиодный индикатор ? Ну не горит она, эта микросхема. Не с чего ей гореть. А раз не горит, значит ее не покупают. А раз не покупают, значит не везут !  Копеечную микросхему купить практически невозможно ее нет в магазинах.  Но именно эту схему я собрал себе как запасную. Родное РР у меня пока (тьху-тьху-тьху) живо. И я стал думать дальше. Во всех предыдущих схемах используются тиристоры. Можно использовать и симисторы. Но именно можно а не обязательно. Напомню принцип работы тиристора - на "палочку" подключили массу, на "треугольничек" - плюс, если на управляющий контакт подать плюс - тиристор откроется, если минус - закроется. Только так и никак иначе. Поэтому я не могу использовать с тиристорами очень распространённую микросхему TL431 (она же КРЕН19) - тиристоры, чтобы открыть их, надо подключать к плюсу, а TL431 подключает к минусу. Сначала я пошёл по проторённому пути, и воткнул между TL431 и тиристорами переходной транзистор. Продолжая модную тогда тему "падонкаффскаго езыка" я назвал схему готичная. Эту схему я делал. Она работает. Её делали и другие люди. И она у них работает. Но (!) больше я этого делать не буду. Смысл ? Опять много деталей. Меняем шило на мыло. Ну раньше было два транзистора, теперь одна трёхногая микросхема и один транзистор. Разницы-то? Хотя в этой схеме можно вместо стабилитрона с резистором поставить один переменный резистор, тогда появится возможность плавно регулировать напряжение, но переменный резистор это ненадёжная деталь. Особенно в условиях мотоцикла. Спустя почти год (я сделал эту схему в июле 2007-го) ребята из Саратова практически повторили эту схему, применив хоть и другие, но аналогичные детали. Схема хороша, но сохраняет главный недостаток - много деталей. Микросхема, которую применили саратовчане (так называемый "супервайзер")держит совсем уж мизерный ток, поэтому они усилили ее дополнительным транзистором. (Вот что непонятно - неужели в Саратове микросхема TL431 это большая проблема чем применённая ими PST529 ?) Когда я начинал, я смотрел в сторону PST529 и подобных, но отказался от них потому что они требуют большого количества дополнительных деталей. А моя задача была - свести количество деталей к минимуму, сохранив достойную функциональность. Вот тут видно как мне предлагают микросхему типа "супервайзер" а я от неё отказываюсь.Через несколько лет Dyn предложил свой вариант "готичной": И успешно её изготовил: ссылка. Деталей опять много, но ему было не лень.

(да, чего уж там - на две три детали то больше... Если кого то интересует изготовление этой схемы - по ссылке выше описание и там же указаны номиналы деталей. Только я немного ошибся - R6 R7 надо поменять местами. Dyn)  Ну а пока я, с подачи Dyn-a, стал изучать симисторы.  И обнаружил принципиальное их отличие от тиристоров. А именно - им совершенно не обязательно "на палочку подключили массу, на треугольничек - плюс, открывать плюсом". Им вообще пофиг какая полярность куда подключена. Это резко меняло дело и открывало новые горизонты. Еще раз напомню - все предыдущие схемы рассчитаны под тиристоры . В них можно использовать симисторы, но не обязательно. А я сделал схему, которая будет работать только с симисторами. И в ней симисторы работают в удобном для себя режиме. В итоге схема приняла такой вид. В уже сложившейся традиции схема была названа зач0тная. Ещё раз отмечу - с этим вариантом Integrated circuit можно использовать только симисторы, тиристоры использовать нельзя ! И включаются эти симисторы не так как на всех предыдущих схемах. То есть взять эту схемку и пришпилить к ней "силовой блок" из прeдыдущих схем - нельзя! Запас по току правда не очень велик - TL431 держит всего 150 миллиампер, но все же это вполне допустимо. Но, как уже отмечалось, я - перфекционист и всё люблю делать с запасом, поэтому я заменил TL431 на классический нижний ключ ULN2003. (Так же можно использовать аналог TD62083). Эта микросхема есть в продаже, работает в этой схеме в своём нормальном режиме и держит ток 500 миллиампер. C этой деталью схема упростилась уже до полного безобразия, а так как принцип не поменялся, получила название зач0тная-2. Эти схемы я делал и делаю до сих пор. И они работают. Их делают и другие люди. И у них эти схемы так же работают.  Некоторое время назад товарищ Poner предложил использовать вместо ключа оптореле. Собраный им образец показал свою работоспособность, хотя и чуть худшие характеристики. Подробности тут. ^ . После прочтения всей этой моей писанины, у вас наверняка накопились вопросы.  Постараюсь на них ответить. Многие спрашивают, почему я пишу "тиристоры" а на схемах рисую симисторы BTA26 ? Причина проста - из-за лени. Большинство тиристоров-симисторов нельзя использовать без прокладок и неметаллических винтов! А вот симисторы BTA16-24-26-41 - можно. Если же использовать другие тиристоры-симисторы (25TTS, BT152, BT225 и т. д.) то приходится ставить каждый на прокладку, да прикручивать его неметаллическим винтом, да следить, чтоб не замкнуло, это так лениво. Так же многие спрашивают какие можно еще применять тиристоры-симисторы. Да в общем-то любые, рассчитанные на ток не меньше 20-ти ампер. Вот прям прийти в магазин и сказать "дайте мне три тиристора или симистора ампер на двадцать." Вообще-то можно и меньше (10-15 ампер), но как уже отмечалось - лично я люблю все делать с запасом. Кроме того, чем на меньше ампер рассчитан тиристор-симистор тем больше он будет греться. Только если использовать симисторы, то для схем "исходная", "гламурная", "брутальная" и "готичная" годятся не любые симисторы а только четырёхквадрантные (4Q). Ещё бывают трёхквадрантные (3Q или hi-com) и они для вышеназванных схем не годятся. А вот для схем "зач0тная" и "зач0тная-2" не только подходят любые симисторы - и 4Q и 3Q, но 3Q даже предпочтительнее, так как будут меньше нагреваться. Но самый лучший симистор для наших целей это конечно BTA26 (он же ВТА24 в другом корпусе). Он подходит ко всем схемам, надёжен и недорог. К тому же выпускается в двух вариантах BTA26бла-бла-бла ^ это 4Q, а BTA26бла-бла-бла W это 3Q. Кроме того, под неизвестно-какие тиристоры-симисторы потребуется пересчитать номиналы резисторов, иначе тиристоры-симисторы будут сильно греться и в итоге сгорят. Разберём этот момент на примере симисторов BTA140. Открываем даташыт (ссылка) Ищем в таблицах параметр I GT (Gate Trigger Current) видим максимальное значение 35 миллиампер. Чуть-чуть "откатываемся назад" от максимального значения, чтобы не грузить симистор, и считаем: 14 вольт / 0.03 ампер = 470 ом. То есть в управляющем контакте одного симистора BTA140 должно быть 470 ом. То есть если взять схему "зачотная", то все резисторы между микросхемой и симисторами должны быть по 470 ом. Если взять схему "брутальная" - по 360 а общий резистор в переделанном РР от жигулей - 110 ом. Единственно чего нельзя делать - это ставить один общий резистор на все три тиристора-симистора, а их управляющие контакты собирать в один пучок. Тогда между тиристорами-симисторами возникнут паразитные связи и всё пойдёт в разнос. У каждого тиристора-симистора должен быть свой "персональный" резистор хотя бы ом на 70, а остальное может быть общим. Короче, купив тиристоры-симисторы, уточняйте все эти моменты по документации на сайте оллдаташыт ! Часто меня спрашивают какой стабилитрон нужно применять в схеме. Стабилитронов много, и многие годятся, но нужно учитывать следующие моменты: Стабилитрон нужен на правильный ток. То есть минимальный ток стабилитрона должен быть не больше 5-ти миллиампер, а максимальный - не меньше 15-ти. Причём эти токи взаимосвязаны, рабочий участок стабилитрона обычно равен 20-30 миллиампер, то есть если у стабилитрона максимальный ток 50 миллиампер, то его минимальный ток будет миллиампер 50-30=20, то есть такой стабилитрон не годится. В магазинах частенько обозначают стабилитроны по мощности, например "13 вольт 0.5 ватта". Это значит, что максимальный ток стабилитрона 0.5W / 13v = 30 миллиампер. Значит у этого стабилитрона минимальный ток будет около 1 миллиампера, и такой стабилитрон подойдёт. Стабилитрон нужен на правильное напряжение, то есть на 14 вольт. Вольт туда - вольт сюда на стабилитроне, аукнется полутора вольтами на выходе схемы. Если стабилитрона на 14 вольт под руками нет, можно набрать его из нескольких стабилитронов в сумме (7+7 6+8) или добавить нужное количество любых маломощных кремниевых диодов в прямом включении, из расчёта, что 1 диод добавляет к стабилитрону 0.7 вольта. Например к стабилитрону на 13 вольт нужен 1 диод вроде 1N400*, КД521 , КД522 , КД509 , КД510 итд. C тем же успехом вместо диода можно использовать второй такой же стабилитрон. С точки зрения сборки это даже предпочтительнее - взял два стабилитрона на 13 вольт, спаял метками друг к другу, воткнул в схему любой стороной, и вопрос закрыт. Теперь пару слов о той части мотоциклетного РР о которой мы еще не говорили - о выпрямительной. Токи потребляемые мотоциклом исчисляются десятками ампер, поэтому диоды надо применять мощные. Если объем двигателя кубиков 400-600, то вполне хватит 30-ти амперных диодов. Я обычно применяю готовый 36-ти амперный диодный мост (сборка на 6 диодов) 36MT. Но если объём двигателя большой - 36МТ не справится. Зависимость проста - большой двигатель труднее крутить стартером, значит стартер ставится более мощный, чтоб его крутить нужен мощный аккумулятор, значит он потребляет большой ток при зарядке. Для того чтоб не рисковать надо использовать 40-ка а то и 50-ти амперные диоды. Например 40CTQ 50HQ 52CPQ и т. д. Вот например вариант "зач0тной-2" на трёх 50-ти амперных мостах KBPC5006 (они же MB506) и трёх симисторах BTA41 (все резисторы по 300 ом).Про себя я называю этот вариант Ever Est что в переводе с латыни означает "вечный". Еще одно замечание - по той же причине (большие токи) провода, которые используются, должны быть очень толстыми. Иначе будет "чота я спаял а оно не работает". Я использую провода сечением 2-3 миллиметра. О ! Вот как раз и пример подоспел:  Ещё один важный момент - радиатор. Лучший радиатор - крышка канализационного люка прикрученная на траверсу. Радиатор от старой РР не годится - он маленький. В родных РР бескорпусные детали приварены к радиатору, этим достигается лучший тепловой контакт. Прикручивая обычные детали к неровной поверхности "родного" радиатора вы не добьётесь такого же хорошего теплового контакта. Поэтому радиатор должен быть большой (я использую примерно 8см на 10см с высотой рёбер 2см) и иметь хотя бы одну идеально ровную поверхность (туда вы прикрутите детали). Ну и о проверке - проверять схему можно только полностью подключенной! Если вы прицепите три провода от генератора, а плюс и минус никуда не подключив будете мерить тестером - вы ничего не увидите. Схема работает только в полном подключении (впрочем так же себя ведут и "родные" РР). Если вы боитесь за мотоцикл то проверяйте на заменителе (аккумулятор плюс лампочка).^ (если вы это уже делали и мозг до сих пор жив, вам просто повезло) Пара фоток как это выглядит в реале: (Но я вас умоляю - не надо делать РР по фоткам ! РР надо делать по схемам. А фотки я помещаю исключительно для подтверждения, что всё написанное выше не теоретические измышлизмы, а вполне реальная практика)

После сборки и проверки обязательно залить эпоксидкой! Иначе от вибрации у деталей поотваливаются "ножки". Причем быстро. В течение дня-двух. Вот собственно и всё. Если будут вопросы - задавайте в разделе ниже, тот который "обсуждения". P.S. Как вы заметили, я постоянно обновляю этот постинг. Дело в том, что некоторые подробности, которые я сперва не описывал, для меня само-собой разумеющееся, а вот для многих читателей оказались непонятны. Поэтому как только я получаю вопрос - ответ на него я вношу в этот постинг. Так что не стесняйтесь, спрашивайте. Часто задается вопрос родной регулятор мотоцикла шести контактный, все схемы пятиконтактные - как поступить? В некоторых мотоциклах сделано так, что управляющая схема регулятора запитывается от замка зажигания. То есть при выключенном замке зажигания нет утечки тока через регулятор и аккумулятор через него не разряжается. Таким образом на регулятор приходит шесть проводов. Три фазы (обычно желтых) из генератора. Минус (он же корпус мотоцикла). Плюс аккумулятора и плюс с замка зажигания. Варианта два. Либо плюнуть на все умности и оставить провод с замка зажигания не при делах. Только его изолировать от реальности тщательно. И поставить пятиконтактный регулятор. Это на случай , например, установки не родного регулятора. Либо если вы сами собрали схему, то руководствуясь приложенным рисунком сделать разрыв между точками А и В. Точку А подать на провод идущий к замку зажигания. Точку В подать на провод идущий к аккумулятору. Если же вас интересует обратный процес - установка шестиконтактного регулятора (купленного по случаю) в мотоцикл где на регулятор приходит лишь пять проводов, тогда все так же три фазы на генератор, затем найдите минус (прозвоните тестером - минус звонится на корпус регулятора накоротко),остальные два провода скрутить и на плюс. Еще часто бывает что выходные провода дублируются. из регулятора выходит два минуса и два плюса. Это легко понять по одинаковому цвету пар проводов. Это другая история - не перепутайте.

Последняя схема, с подстройкой выходного напряжения:

ignorik.ru

Регулятор напряжения на скутере - Все об авто и мото технике

Регулятор напряжения на скутере

Регулятор напряжения на скутере также называют реле-регулятор — это важнейшая деталь всей электрической системы скутера, которая помимо обеспечения основных функций помогает аккумулятору работать дольше и лучше. Но основная задаче реле регулятора — обеспечить стабильную подачу тока, который поступает от генератора. После того как ток поступил на реле-регулятор, деталь начинает правильное его распределение на все необходимые приборы, среди которых лампочки, аккумулятор, датчики, индикаторы и прочие. По своему предназначению реле можно сравнить с трансформатором, который принимает и распределяет электричество. Без него ток будет попросту идти в неправильном количестве, что грозит мгновенному выходу из строя всех приборов. В зависимости от модели скутера реле не дает генератору вырабатывать напряжение большее или меньшее нормы, в более частых случаях эта норма колеблется от 12 до 14,5 вольт. Все потребители тока (фары, повороты, датчики и т. д.) создаются с расчетом на использование до 12 вольт.

Также стоит учитывать, что изначально генератор скутера вырабатывает в среднем от 30 до 35 вольт, но при начале работы реле-регулятор напряжения скутера 4т позволяет снизить этот показатель до приемлемых 12-14.5 вольт. Еще одна важная задача данной детали в том, что она получает от генератора переменный ток, превращая его в постоянный. При поломке реле напряжения вам грозит быстрый износ всех электроприборов, лампочки со временем перегорят и придется менять из до тех пор, пока они не получат постоянный ток в предельно допустимом количестве.

Как выглядит реле-регулятор?

 

Данная деталь внешне достаточно небольшая, она выглядит как маленький радиатор из алюминия. Он отлично работает с тиристором, который имеет плоскую поверхность и располагается под радиатором. Задача тиристора — нормализовать напряжение при скачках выше или ниже нормы. Реле-регулятор находиться в передней части скутера под передним пластиком, его легко найти благодаря заметному внешнему виду. Если учитывать деталь китайских 4т скутеров, характеристики детали и ее тип подбирается в соответствии с приборами скутера, расположением и их характеристик. Настоятельно рекомендуем покупать реле в точности под вашу модель скутера, в противном случае разъемы не подойдут.

Проверка реле регулятора на скутере

Если вы заметили, что лампочки на вашем скутере часто перегорают, даже после замены это происходит через какой-то промежуток, скорее всего у вас сломалось реле-регулятор. Но перед заменой нужно в этом убедиться, проверив деталь при помощи тестера. Для этого берем механический или электронный тестер. Первым делом нужно настроить прибор, включив ему режим «КилоОм». Дальше придется снять реле со скутера и замерить показатели на выводах, которые промаркированы на картинке ниже.

 

Первым делом щупом замеряем показатели выводов АВ, они должны показать 18 кОм. Далее меняем местами щуп и проверяем выводы ВА, тестер должен показать 0 кОм, то есть никак не реагировать. Если тестер начинает реагировать, скорее всего реле сломано. После этого проверяем выводы СД, показатель должен быть в пределах 33 кОм. Поменяв местами выводы на ДС напряжение должно немного вырасти, например, до показателя 42 кОм. В других случаях прозвона выводов меняя их (АД, ДВ и т. д.), тестер не должен реагировать на действие, отметка должна показывать о кОм.

Важно: данный пример проверки реле проводился на японском скутере бренда Хонда, поэтому если вы владелец любой из моделей Tact, Dio или Lead, смело проверяйте исправность вышеприведенным способом.

avtomoto-best.ru