Линейную скорость мотоцикла движущегося равномерно по окружности. Линейную скорость мотоцикла движущегося равномерно по окружности увеличили в 2 раза

Асламазов Л.Г. Движение по окружности // Квант. Линейную скорость мотоцикла движущегося равномерно по окружности


Линейную скорость мотоцикла движущегося равномерно по окружности увеличили в 2 раза

Здорово, когда в тёплое время года есть возможность выехать на природу, на дачу или просто прокатиться с ветерком. Для этого не обязательно иметь дорогой автомобиль, или навороченную модель мотоцикла. Можно обойтись достаточно бюджетным вариантом, и подобрать оптимальное транспортное средство на котором можно добраться куда угодно. Речь идёт о разновидности лёгкого мотоцикла, которая называется линейную скорость мотоцикла движущегося равномерно по окружности увеличили в 2 раза. Научиться управлять лёгким транспортом сможет даже подросток.

Если Вы прекрасно управляетесь с велосипедом, любите прокатиться с ветерком, то Вам просто необходимо приобрести транспортное средство с двигателем. Лучшим вариантом станет квадроциклы детские бензиновые в екатеринбурге или скутер. Педали как на велосипеде крутить уже не придется, а значит Вы сможете наслаждаться поездкой ещё сильнее и получать гораздо больше позитива. Вы никогда не будете уставшим, даже если изъездите город вдоль и поперек.

Существует очень много моделей скутеров. Самые распространенные, это модели с объемом двигателя до пятидесяти кубических сантиметров. Такие аппараты не требуют наличия полноценных водительских прав категории «А», а значит Вы сэкономите на страховке и обязательном техническом осмотре. К тому же, Вам не придется платить дорожный налог. Акцентируйте на этом внимание, когда будете выбирать купить скутер бу челябинске или скутер. Более мощные модели стоит рассматривать только после полного обучения езде на аппаратах поменьше.

Только лучшее: линейную скорость мотоцикла движущегося равномерно по окружности увеличили в 2 раза

По сравнению с автомобилем, двухколесные транспортные средства имеют массу преимуществ. Небольшому скутеру не требуется гараж или целое машиноместо, расход топлива в разы меньше. Загрязняет окружающую среду мопеды рубцовск гораздо меньше, то есть экологии Вы не навредите. В общем, сплошные плюсы.

Популярны езда на квадроцикле купить, хонда мотоциклы двигатель, крестовина на квадроцикл брп, подключение тахометра на скутер схемы, сколько нужно масло в мотоцикл урал, скутера хонда такт аф 51, облицовка фары мотоцикла, из чего сделать синхронизатор для мото, кофр для квадроцикла w 1300, продажа мото в россии бу на дроме.

Не забывайте своевременно обслуживать свой резина скутер r10. Вскоре, это будет даже приносить Вам удовольствие. От своевременности и качества обслуживания зависит долговечность транспорта. Используйте только оригинальные запасные части и аксессуары. В сети существует множество тематических форумов, где вы сможете делиться своими впечатлениями и получить ответы на возникающие вопросы в процессе эксплуатации. Однажды сев за руль двухколесного «коня», Вы больше не сможете отказать себе в этом удовольствии.

scooter.tw1.ru

Равномерное движение по окружности | Физика для всех

Равномерное движение по окружности – это простейший пример криволинейного движения. Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость.

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости Тангенциальное ускорение в этом случае отсутствует (ar = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение (нормальное ускорение) an или аЦС. В каждой точке траектории вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

aЦС=v2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

то

360о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958о = 57о18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

aЦС = (4π2R) / T2 = 4π2Rn2

av-mag.ru

Движение по окружности, угловая скорость, частота, период, центростремительное ускорение. Формулы, определения, пояснения

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T. Путь, который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

fizmat.by

Равномерное движение тела по окружности – FIZI4KA

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности ​\( T \)​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​\( [\,T\,] \)​ = 1 с.

Частота обращения ​\( (n) \)​ — число полных оборотов тела за одну секунду: ​\( n=N/t \)​. Единица частоты обращения — \( [\,n\,] \) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​\( n=1/T \)​.

Пусть некоторое тело, движущееся по окружности, за время ​\( t \)​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​\( \varphi \)​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​\( \omega \)​ — физическая величина, равная отношению угла поворота \( \varphi \) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​\( \omega=\varphi/t \)​. Единица угловой скорости — радиан в секунду, т.е. ​\( [\,\omega\,] \)​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​\( 2\pi \)​. Поэтому ​\( \omega=2\pi/T \)​.

Линейная скорость тела ​\( v \)​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​\( \vec{v}=l/t \)​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​\( \vec{v}=2\pi\!R/T \)​. Связь между линейной и угловой скоростью выражается формулой: ​\( v=\omega R \)​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​\( \vec{a}=\frac{\Delta\vec{v}}{t} \)​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​\( a=\frac{v^2}{R} \)​. Так как ​\( v=\omega R \)​, то ​\( a=\omega^2R \)​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости2) изменяется только направление его скорости3) изменяются и модуль, и направление его скорости4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​\( R_1 \)​ от центра вращающегося колеса, равна ​\( v_1 \)​. Чему равна скорость ​\( v_2 \)​ точки 2, находящейся от центра на расстоянии ​\( R_2=4R_1 \)​?

1) ​\( v_2=v_1 \)​2) ​\( v_2=2v_1 \)​3) ​\( v_2=0,25v_1 \)​4) ​\( v_2=4v_1 \)​

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​\( T=2\pi\!Rv \)​2) \( T=2\pi\!R/v \)​3) \( T=2\pi v \)​4) \( T=2\pi/v \)​

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​\( \omega=a^2R \)​2) \( \omega=vR^2 \)​3) \( \omega=vR \)4) \( \omega=v/R \)​

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза2) уменьшилась в 2 раза3) увеличилась в 4 раза4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось2) уменьшилось в 16 раз3) уменьшилось в 4 раза4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз2) уменьшилось в 9 раз3) уменьшилось в 3 раза4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с2) 3300 с3) 3·10-4 с4) 5·10-6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц2) 2 Гц3) 20 Гц4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с2) 7 с3) 0,07 с4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физическойвеличины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНАА) линейная скоростьБ) угловая скоростьВ) частота обращения

ФОРМУЛА1) ​\( 1/T \)​2) ​\( v^2/R \)​3) ​\( v/R \)​4) ​\( \omega R \)​5) ​\( 1/n \)​

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНАA) угловая скоростьБ) линейная скоростьB) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ1) увеличилась2) уменьшилась3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Ответы

Равномерное движение тела по окружности

5 (100%) 1 vote

fizi4ka.ru

Движение по окружности | LAMPA

Найдем угловую скорость. Известно, что ω=φt\omega=\frac{\varphi}{t}ω=tφ​. В качестве угла φ\varphiφ можно взять полный оборот, то есть угол 2π2\pi2π радиан, а в качестве времени — время одного полного оборота, то есть период TTT. Поэтому

ω=2πT,\omega=\frac{2\pi}{T}{,}ω=T2π​,ω=2πT=2π⋅1T=2πν.\omega=\frac{2\pi}{T}=2\pi\cdot\frac{1}{T}=2\pi\nu{.}ω=T2π​=2π⋅T1​=2πν.

Эти формулы мы тоже рекомендуем запомнить. Это будет полезно.

Единица измерения угловой скорости [ω]=радс[\omega]=\frac{\text{рад}}{\text{с}}[ω]=срад​.

Оказывается, что линейная скорость VVV и угловая скорость ω\omegaω связаны друг с другом. Рассмотрим пример из жизни. На детских площадках наверняка все видели карусель. Представьте, что карусель вращается. Вы сами сидите на сиденьи этой карусели, а ваш друг не стал сидеть на сиденьи, а "пролез" поближе к центру карусели.

Поскольку каждый из вас поворачивается вокруг карусели на один и тот же угол за то же время, то угловые скорости у вас равны: ωвы=ωдруг\omega_{вы}=\omega_{друг}ωвы​=ωдруг​. Но вот линейные скорости у вас не равны: Vвы≠VдругV_{вы}\neq V_{друг}Vвы​≠Vдруг​. Это нам подсказывает наш жизненный опыт. Тот, кто сидит поближе, двигается медленнее.

Чем ближе к центру находится тело — тем меньше его линейная скорость VVV. И наоборот: чем дальше от центра (чем больше расстояние от центра), тем больше скорость VVV.

Линейная скорость VVV также будет больше и в том случае, если будет больше быстрота поворота вокруг оси, то есть угловая скорость ω\omegaω.

По-простому: чем дальше сидишь от оси (чем больше RRR) и чем быстрее вращается тело (чем больше ω\omegaω), тем больше линейная скорость VVV.

Линейную скорость VVV можно пойти по формуле:

V=ω⋅R.V=\omega\cdot R{.}V=ω⋅R.

Эту формулу можно вывести строго. Возьмем уже известные нам формулы:

V=2πR⋅νV=2\pi R\cdot \nuV=2πR⋅ν и ω=2π⋅ν\omega=2\pi\cdot \nuω=2π⋅ν.

Из них видно, что в первой формуле вместо 2πν2\pi\nu2πν можно подставить ω\omegaω:

V=2πR⋅ν=2πνR=(2πν)⋅R=ω⋅RV=2\pi R\cdot \nu=2\pi\nu R=(2\pi\nu)\cdot R=\omega\cdot RV=2πR⋅ν=2πνR=(2πν)⋅R=ω⋅R.

Мы получили формулу V=ω⋅RV=\omega\cdot RV=ω⋅R.

lampa.io

Асламазов Л.Г. Движение по окружности // Квант

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Для описания движения по окружности наряду с линейной скоростью вводят понятие угловой скорости. Если точка при движении по окружности за время Δt описывает дугу, угловая мера которой Δφ, то угловая скорость .

Угловая скорость ω связана с линейной скоростью υ соотношением υ = ω·r, где r — радиус окружности, по которой движется точка (рис. 1). Понятие угловой скорости особенно удобно для описания вращения твердого тела вокруг оси. Хотя линейные скорости у точек, находящихся на разном расстоянии от оси, будут неодинаковыми, их угловые скорости будут равны, и можно говорить об угловой скорости вращения тела в целом.

Рис. 1.

Задача 1. Диск радиуса r катится без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянная и равна υп. С какой угловой скоростью при этом вращается диск?

Каждая точка диска участвует в двух движениях — в поступательном движении со скоростью υп вместе с центром диска и во вращательном движении вокруг центра с некоторой угловой скоростью ω.

Для нахождения ω воспользуемся отсутствием проскальзывания, то есть тем, что в каждый момент времени скорость точки диска, соприкасающейся с плоскостью, равна нулю. Это означает, что для точки А (рис. 2) скорость поступательного движения υп равна по величине и противоположна по направлению линейной скорости вращательного движения υвр = ω·r. Отсюда сразу получаем .

Рис. 2.

Задача 2. Найти скорости точек В, С и D того же диска (рис. 3).

Рис. 3.

Рассмотрим вначале точку В. Линейная скорость ее вращательного движения направлена вертикально вверх и равна , то есть по величине равна скорости поступательного движения, которая, однако, направлена горизонтально. Складывая векторно эти две скорости, находим, что результирующая скорость υB по величине равна  и образует угол 45º с горизонтом. У точки С скорости вращательного и поступательного движения направлены в одну сторону. Результирующая скорость υC равна 2υп и направлена горизонтально. Аналогично находится и скорость точки D (см. рис. 3).

Даже в том случае, когда скорость точки, движущейся по окружности, не меняется по величине, точка имеет некоторое ускорение, так как меняется направление вектора скорости. Это ускорение называется центростремительным. Оно направлено к центру окружности и равно  (R — радиус окружности, ω и υ — угловая и линейная скорости точки).

Если же скорость точки, движущейся по окружности, меняется не только по направлению, но и по величине, то наряду с центростремительным ускорением существует и так называемое тангенциальное ускорение. Оно направлено по касательной к окружности и равно отношению  (Δυ — изменение величины скорости за время Δt).

Задача 3. Найти ускорения точек А, В, С и D диска радиуса r, катящегося без проскальзывания по горизонтальной плоскости. Скорость центра диска постоянна и равна υп (рис. 3).

В системе координат, связанной с центром диска, диск вращается с угловой скоростью ω, а плоскость движется поступательно со скоростью υп. Проскальзывание между диском и плоскостью отсутствует, следовательно, . Скорость поступательного движения υп не меняется, поэтому угловая скорость вращения диска постоянная и точки диска имеют только центростремительное ускорение , направленное к центру диска. Так как система координат движется без ускорения (с постоянной скоростью υп), то в неподвижной системе координат ускорения точек диска будут теми же.

Перейдем теперь к задачам на динамику вращательного движения. Вначале рассмотрим простейший случай, когда движение по окружности происходит с постоянной скоростью. Так как ускорение тела при этом направлено к центру, то и векторная сумма всех сил, приложенных к телу, должна быть тоже направлена к центру, и по II закону Ньютона .

Следует помнить, что в правую часть этого уравнения входят только реальные силы, действующие на данное тело со стороны других тел. Никакой центростремительной силы при движении по окружности не возникает. Этим термином пользуются просто для обозначения равнодействующей сил, приложенных к телу, движущемуся по окружности. Что касается центробежной силы, то она возникает только при описании движения по окружности в неинерциальной (вращающейся) системе координат. Мы пользоваться здесь понятием центростремительной и центробежной силы вообще не будем.

Задача 4. Определить наименьший радиус закругления дороги, которое автомобиль может пройти при скорости υ = 70 км/ч и коэффициенте трения шин о дорогу k =0,3.

На автомобиль действуют сила тяжести Р = m·g, сила реакции дороги N и сила трения Fтp между шинами автомобиля и дорогой. Силы Р и N направлены вертикально и равны по величине: P = N. Сила трения, препятствующая проскальзыванию («заносу») автомобиля, направлена к центру поворота и сообщает центростремительное ускорение: . Максимальное значение силы трения Fтр max = k·N = k·m·g, поэтому минимальное значение радиуса окружности, по которой еще возможно движение со скоростью υ, определяется из уравнения . Отсюда  (м).

Сила реакции дороги N при движении автомобиля по окружности не проходит через центр тяжести автомобиля. Это связано с тем, что ее момент относительно центра тяжести должен компенсировать момент силы трения, стремящийся опрокинуть автомобиль. Величина силы трения тем больше, чем больше скорость автомобиля . При некотором значении скорости момент силы трения превысит момент силы реакции и автомобиль опрокинется.

Задача 5. При какой скорости автомобиль, движущийся по дуге окружности радиуса R = 130 м, может опрокинуться? Центр тяжести автомобиля находится на высоте h = 1 м над дорогой, ширина следа автомобиля l = 1,5 м (рис. 4).

Рис. 4.

В момент опрокидывания автомобиля как сила реакции дороги N, так и сила трения Fтp приложены к «внешнему» колесу. При движении автомобиля по окружности со скоростью υ на него действует сила трения . Эта сила создает момент относительно центра тяжести автомобиля . Максимальный момент силы реакции дороги N = m·g относительно центра тяжести равен  (в момент опрокидывания сила реакции проходит через внешнее колесо). Приравнивая эти моменты, найдем уравнение для максимальной скорости, при которой автомобиль еще не опрокинется:

Откуда  ≈ 30 м/с ≈ 110 км/ч.

Чтобы автомобиль мог двигаться с такой скоростью, необходим коэффициент трения  (см. предыдущую задачу).

Аналогичная ситуация возникает при повороте мотоцикла или велосипеда. Сила трения, создающая центростремительное ускорение, имеет момент относительно центра тяжести, стремящийся опрокинуть мотоцикл. Поэтому для компенсации этого момента моментом силы реакции дороги мотоциклист наклоняется в сторону поворота (рис. 5).

Задача 6. Мотоциклист едет по горизонтальной дороге со скоростью υ = 70 км/ч, делая поворот радиусом R = 100 м. На какой угол α к горизонту он должен при этом наклониться, чтобы не упасть?

Сила трения между мотоциклом и дорогой , так как она сообщает мотоциклисту центростремительное ускорение. Сила реакции дороги N = m·g. Условие равенства моментов силы трения и силы реакции относительно центра тяжести дает уравнение: Fтp·l·sin α = N·l·cos α, где l — расстояние ОА от центра тяжести до следа мотоцикла (см. рис. 5).

Рис. 5.

Подставляя сюда значения Fтp и N, находим что  или . Отметим, что равнодействующая сил N и Fтp при этом угле наклона мотоцикла проходит через центр тяжести, что и обеспечивает равенство нулю суммарного момента сил N и Fтp.

Для того, чтобы увеличить скорость движения по закруглению дороги, участок дороги на повороте делают наклонным. При этом в создании центростремительного ускорения, кроме силы трения, участвует и сила реакции дороги.

Задача 7. С какой максимальной скоростью υ может двигаться автомобиль по наклонному треку с углом наклона α при радиусе закругления R и коэффициенте трения шин о дорогу k?

На автомобиль действуют сила тяжести m·g, сила реакции N, направленная перпендикулярно плоскости трека, и сила трения Fтp, направленная вдоль трека (рис. 6).

Рис. 6.

Так как нас не интересуют в данном случае моменты сил, действующих на автомобиль, мы нарисовали все силы приложенными к центру тяжести автомобиля. Векторная сумма всех сил должна быть направлена к центру окружности, по которой движется автомобиль, и сообщать ему центростремительное ускорение. Поэтому сумма проекций сил на направление к центру (горизонтальное направление) равна , то есть

Сумма проекций всех сил на вертикальное направление равна нулю:

N·cos α – m·g – Fтp·sin α = 0.

Подставляя в эти уравнения максимальное возможное значение силы трения Fтp = k·N и исключая силу N, находим максимальную скорость , с которой еще возможно движение по такому треку. Это выражение всегда больше значения , соответствующего горизонтальной дороге.

Разобравшись с динамикой поворота, перейдем к задачам на вращательное движение в вертикальной плоскости.

Задача 8. Автомобиль массы m = 1,5 т движется со скоростью υ = 70 км/ч по дороге, показанной на рисунке 7. Участки дороги АВ и ВС можно считать дугами окружностей радиуса R = 200 м, касающимися друг друга в точке В. Определить силу давления автомобиля на дорогу в точках А и С. Как меняется сила давления при прохождении автомобилем точки В?

Рис. 7.

В точке А на автомобиль действуют сила тяжести Р = m·g и сила реакции дороги NA. Векторная сумма этих сил должна быть направлена к центру окружности, то есть вертикально вниз, и создавать центростремительное ускорение: , откуда  (Н). Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе реакции. В точке С векторная сумма сил направлена вертикально вверх:  и  (Н). Таким образом, в точке А сила давления меньше силы тяжести, а в точке С — больше.

В точке В автомобиль переходит с выпуклого участка дороги на вогнутый (или наоборот). При движении по выпуклому участку проекция силы тяжести на направление к центру должна превышать силу реакции дороги NB1, причем . При движении по вогнутому участку дороги, наоборот, сила реакции дороги NВ2 превосходит проекцию силы тяжести: .

Из этих уравнений получаем, что при прохождении точки В сила давления автомобиля на дорогу меняется скачком на величину ≈ 6·103 Н. Разумеется, такие ударные нагрузки действуют разрушающе как на автомобиль, так и на дорогу. Поэтому дороги и мосты всегда стараются делать так, чтобы их кривизна менялась плавно.

При движении автомобиля по окружности с постоянной скоростью сумма проекций всех сил на направление, касательное к окружности, должна быть равна нулю. В нашем случае касательная составляющая силы тяжести уравновешивается силой трения между колесами автомобиля и дорогой.

Величина силы трения регулируется вращательным моментом, прикладываемым к колесам со стороны мотора. Этот момент стремится вызвать проскальзывание колес относительно дороги. Поэтому возникает сила трения, препятствующая проскальзыванию и пропорциональная приложенному моменту. Максимальное значение силы трения равно k·N, где k — коэффициент трения между шинами автомобиля и дорогой, N — сила давления на дорогу. При движении автомобиля вниз сила трения играет роль тормозящей силы, а при движении вверх, наоборот, роль силы тяги.

Задача 9. Автомобиль массой m = 0,5 т, движущийся со скоростью υ = 200 км/ч, совершает «мертвую петлю» радиуса R = 100 м (рис. 8). Определить силу давления автомобиля на дорогу в верхней точке петли А; в точке В, радиус-вектор которой составляет угол α = 30º с вертикалью; в точке С, в которой скорость автомобиля направлена вертикально. Возможно ли движение автомобиля по петле с такой постоянной скоростью при коэффициенте трения шин о дорогу k = 0,5?

Рис. 8.

В верхней точке петли сила тяжести и сила реакции дороги NA направлены вертикально вниз. Сумма этих сил создает центростремительное ускорение: . Поэтому  Н.

Сила давления автомобиля на дорогу равна по величине и противоположна по направлению силе NА.

В точке В центростремительное ускорение создается суммой силы реакции и проекции силы тяжести на направление к центру: . Отсюда  Н.

Легко видеть, что NB > NA; с увеличением угла α сила реакции дороги увеличивается.

В точке С сила реакции  Н; центростремительное ускорение в этой точке создается только силой реакции, а сила тяжести направлена по касательной. При движении по нижней части петли сила реакции будет превышать  и максимальное значение  Н сила реакции имеет в точке D. Значение , таким образом, является минимальным значением силы реакции.

Скорость автомобиля будет постоянной, если касательная составляющая силы тяжести не превышает максимальной силы трения k·N во всех точках петли. Это условие заведомо выполняется, если минимальное значение  превосходит максимальное значение касательной составляющей силы веса. В нашем случае это максимальное значение равно m·g (оно достигается в точке С), и условие  выполняется при k = 0,5, υ = 200 км/ч, R = 100 м.

Таким образом, в нашем случае движение автомобиля по «мертвой петле» с постоянной скоростью возможно.

Рассмотрим теперь движение автомобиля по «мертвой петле» с выключенным мотором. Как уже отмечалось, обычно момент силы трения противодействует моменту, приложенному к колесам со стороны мотора. При движении автомобиля с выключенным мотором этого момента нет, и силой трения между колесами автомобиля и дорогой можно пренебречь.

Скорость автомобиля уже не будет постоянной — касательная составляющая силы тяжести замедляет или ускоряет движение автомобиля по «мертвой петле». Центростремительное ускорение тоже будет меняться. Создается оно, как обычно, равнодействующей силы реакции дороги и проекции силы тяжести на направление к центру петли.

Задача 10. Какую наименьшую скорость должен иметь автомобиль в нижней точке петли D (см. рис. 8) для того, чтобы совершить ее с выключенным мотором? Чему будет равна при этом сила давления автомобиля на дорогу в точке В? Радиус петли R = 100 м, масса автомобиля m = 0,5 т.

Посмотрим, какую минимальную скорость может иметь автомобиль в верхней точке петли А, чтобы продолжать двигаться по окружности?

Центростремительное ускорение в этой точке дороги создается суммой силы тяжести и силы реакции дороги . Чем меньшую скорость имеет автомобиль, тем меньшая возникает сила реакции NA. При значении  эта сила обращается в нуль. При меньшей скорости сила тяжести превысит значение, необходимое для создания центростремительного ускорения, и автомобиль оторвется от дороги. При скорости  сила реакции дороги обращается в нуль только в верхней точке петли. В самом деле, скорость автомобиля на других участках петли будет большей, и как легко видеть из решения предыдущей задачи, сила реакции дороги тоже будет большей, чем в точке А. Поэтому, если автомобиль в верхней точке петли имеет скорость , то он нигде не оторвется от петли.

Теперь определим, какую скорость должен иметь автомобиль в нижней точке петли D, чтобы в верхней точке петли А его скорость . Для нахождения скорости υD можно воспользоваться законом сохранения энергии, как если бы автомобиль двигался только под действием силы тяжести. Дело в том, что сила реакции дороги в каждый момент направлена перпендикулярно перемещению автомобиля, а, следовательно, ее работа равна нулю (напомним, что работа ΔA = F·Δs·cos α, где α — угол между силой F и направлением перемещения Δs). Силой трения между колесами автомобиля и дорогой при движении с выключенным мотором можно пренебречь. Поэтому сумма потенциальной и кинетической энергии автомобиля при движении с выключенным мотором не меняется.

Приравняем значения энергии автомобиля в точках А и D. При этом будем отсчитывать высоту от уровня точки D, то есть потенциальную энергию автомобиля в этой точке будем считать равной нулю. Тогда получаем

Подставляя сюда значение  для искомой скорости υD, находим:  ≈ 70 м/с ≈ 260 км/ч.

Если автомобиль въедет в петлю с такой скоростью, то он сможет совершить ее с выключенным мотором.

Определим теперь, с какой силой при этом автомобиль будет давить на дорогу в точке В. Скорость автомобиля в точке В опять легко находится из закона сохранения энергии:

Подставляя сюда значение , находим, что скорость .

Воспользовавшись решением предыдущей задачи, по заданной скорости находим силу давления в точке B:

 Н.

Аналогично можно найти силу давления в любой другой точке «мертвой петли».

Упражнения

1. Найти угловую скорость искусственного спутника Земли, вращающегося по круговой орбите с периодом обращения Т = 88 мин. Найти линейную скорость движения этого спутника, если известно, что его орбита расположена на расстоянии R = 200 км от поверхности Земли.

2. Диск радиуса R помещен между двумя параллельными рейками. Рейки движутся со скоростями υ1 и υ2. Определить угловую скорость вращения диска и скорость его центра. Проскальзывание отсутствует.

3. Диск катится по горизонтальной поверхности без проскальзывания. Показать, что концы векторов скоростей точек вертикального диаметра находятся на одной прямой.

4. Самолет движется по окружности с постоянной горизонтальной скоростью υ = 700 км/час. Определить радиус R этой окружности, если корпус самолета наклонен на угол α = 5°.

5. Груз массы m = 100 г, подвешенный на нити длины l = 1 м, равномерно вращается по кругу в горизонтальной плоскости. Найти период обращения груза, если при его вращении нить отклонена по вертикали на угол α = 30°. Определить также натяжение нити.

6. Автомобиль движется со скоростью υ = 80 км/ч по внутренней поверхности вертикального цилиндра радиуса R = 10 м по горизонтальному кругу. При каком минимальном коэффициенте трения между шинами автомобиля и поверхностью цилиндра это возможно?

7. Груз массой m подвешен на нерастяжимой нити, максимально возможное натяжение которой равно 1,5m·g. На какой максимальный угол α можно отклонить нить от вертикали, чтобы при дальнейшем движении груза нить не оборвалась? Чему будет равно при этом натяжение нити в тот момент, когда нить составит угол α/2 с вертикалью?

Ответы

I. Угловая скорость искусственного спутника Земли  ≈ 0,071 рад/с. Линейная скорость спутника υ = ω·R. где R — радиус орбиты. Подставляя сюда R = R3 + h, где R3 ≈ 6400 км, находим υ ≈ 467 км/с.

2. Здесь возможны два случая (рис. 1). Если угловая скорость диска ω, а скорость его центра υ, то скорости точек, соприкасающихся с рейками, будут соответственно равны

в случае a) υ1 = υ + ω·R, υ2 = υ – ω·R;

в случае б) υ1 = υ + ω·R, υ2 = ω·R – υ.

(Мы приняли для определенности, что υ1 > υ2). Решая эти системы, находим:

а)

б)

Рис. 1.

3. Скорость любой точки М, лежащей на отрезке ОВ (см. рис. 2), находится по формуле υM = υ + ω·rM, где rM — расстояние от точки М до центра диска О. Для любой точки N, принадлежащей отрезку ОА, имеем: υN = υ – ω·rN, где rN — расстояние от точки N до центра. Обозначим через ρ расстояние от любой точки диаметра ВА до точки А соприкосновения диска с плоскостью. Тогда очевидно, что rM = ρ – R и rN = R – ρ = –(ρ – R). где R — радиус диска. Поэтому скорость любой точки на диаметре ВА находится по формуле: υρ = υ + ω·(ρ – R). Так как диск катится без проскальзывания, то  и для скорости υρ получаем υρ = ω·ρ. Отсюда следует, что концы векторов скоростей находятся на прямой, выходящей из точки А и наклоненной к диаметру ВА под углом, пропорциональным угловой скорости вращения диска ω.

Рис. 2.

Доказанное утверждение позволяет нам сделать вывод, что сложное движение точек, находящихся на диаметре ВА, можно в каждый данный момент рассматривать как простое вращение вокруг неподвижной точки А с угловой скоростью ω, равной угловой скорости вращения вокруг центра диска. В самом деле, в каждый момент скорости этих точек направлены перпендикулярно диаметру ВА, а по величине равны произведению ω на расстояние до точки А.

Оказывается, что это утверждение справедливо для любой точки диска. Более того, оно является общим правилом. При любом движении твердого тела в каждый момент существует ось, вокруг которой тело просто вращается — мгновенная ось вращения.

4. На самолет действуют (см. рис. 3) сила тяжести Р = m·g и подъемная сила N, направленная перпендикулярно плоскости крыльев (так как самолет движется с постоянной скоростью, то сила тяги и сила лобового сопротивления воздуха уравновешивают друг друга). Равнодействующая сил Р и N должна быть направлена к центру окружности, по которой движется самолет, и создавать центростремительное ускорение . Из рисунка находим:

 или  км.

Рис. 3.

5. Равнодействующая силы тяжести Р = m·g и силы натяжения нити Т должна создавать центростремительное ускорение ац = ω2·R, где R = l·sin α — радиус круга, по которому вращается груз. Из рисунка 4 получаем:

m·ω2·R = m·g·tg α, откуда

Период обращения груза

Натяжение нити

Рис. 4.

6. На автомобиль действуют (рис. 5) сила тяжести Р = m·g, сила реакции со стороны цилиндра N и сила трения Fтp. Так как автомобиль движется по горизонтальному кругу, то силы Р и Fтp уравновешивают друг друга, а сила N создает центростремительное ускорение . Максимальное значение силы трения связано с силой реакции N соотношением: Fтp = k·N. В результате получаем систему уравнений: , из которой находится минимальное значение коэффициента трения

Рис. 5.

7. Груз будет двигаться по окружности радиуса l (рис. 6). Центростремительное ускорение груза  (υ — скорость груза) создается разностью величин силы натяжения нити Т и проекции силы тяжести m·g направление нити: . Поэтому , где β — угол, образуемый нитью с вертикалью. По мере того, как груз будет опускаться, его скорость будет расти, а угол β будет уменьшаться. Натяжение нити станет максимальным при угле β = 0 (в тот момент, когда нить будет вертикальной): . Максимальная скорость груза υ0 находится по углу α, на который отклоняют нить, из закона сохранения энергии:

Используя это соотношение, для максимального значения натяжения нити получаем формулу: Tmax = m·g·(3 – 2 cos α). По условию задачи Tmах = 2m·g. Приравнивая эти выражения, находим cos α = 0,5 и, следовательно, α = 60°.

Определим теперь натяжение нити при . Скорость груза в этот момент также находится из закона сохранения энергии:

Подставляя значение υ1 в формулу для силы натяжения, находим:

Рис. 6.

www.alsak.ru

45 задач на равномерное движение по окружности

9 класс

Задания взяты из разных источников

  1. Как направлена мгновенная скорость при криволинейном движении?

  2. Как направлено центростремительное ускорение при движении тела по окружности?

  3. Автомобиль движется по криволинейной траектории с постоянной по модулю скоростью. Можно ли утверждать, что его ускорение в этом случае равно нулю?

  4. Является ли скорость постоянной величиной при равномерном движении тела по окружности?

  5. Мотоциклист движется по окружности радиусом 50 м со скоростью     5 м/с. Определите центростремительное ускорение мотоциклиста.

  1. Вал диаметром 20 см при вращении делает один оборот за 0,4 с. Определите линейную скорость точек на поверхности вала.

  2. Конькобежец движется со скоростью 12 м/с по окружности радиусом 50 м. Каково центростремительное ускорение при движении конькобежца?

  3. Определите скорость трамвайного вагона, движущегося по закруглению радиусом 12,5 м, если центростремительное ускорение 0,5 м/с2
  4. Автомобиль движется по закруглению дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение автомобиля?
  5. При работе стиральной машины в режиме сушки поверхность её барабана, находящаяся на расстоянии 21 см от оси вращения, движется вокруг этой оси со скоростью 20 м/с. Определите ускорение, с которым движутся точки поверхности барабана.
 
  1. Что называют периодом вращения?
  2. Чему равна линейная скорость точки обода колеса, если радиус колеса 30 см и один оборот она совершает за 2 с?
  3. Чему равен путь, пройденный концом минутной стрелки будильника за 10 минут, если её длина 2,4 см?
  4. Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?
  5. Вал диаметром 20 см при вращении делает один оборот за 0,4 с. Определите линейную скорость точек на поверхности вала.
  1. Шлифовальный камень радиусом 30 см совершает один оборот за    0,6 с. Где расположены точки, имеющие наибольшую линейную скорость, и чему она равна?
  2. Скорость автомобиля 72 км/ч. Каковы частота и период обращения колеса автомобиля, если диаметр колеса 70 см? Сколько оборотов совершит колесо за 10 минут?
  3. Каково центростремительное ускорение точки обода колеса автомобиля, если диаметр колеса 70 см? Скорость автомобиля 54 км/ч.
  4. Колесо велосипеда имеет радиус 40 см. С какой скоростью едет велосипедист, если колесо делает 120 об/мин? Чему равен период вращения колеса?
  5. Вася и Ваня вращаются на каруселях, сидя в люльках, находящихся, соответственно на расстоянии 4 и 8 м от центра платформы, на которой установлены люльки. Как соотносится центростремительное ускорение Васи с центростремительным ускорением Вани?
  1. Спутник  вращается вокруг планеты с постоянной скоростью 8 км/с по круговой орбите с радиусом 8 000 км. Рассчитайте центростремительное ускорение спутника в СИ.
  2. Спутник равномерно движется по круговой орбите радиусом в 6 000 км вокруг планеты с периодом 1 час. Рассчитайте скорость его движения по орбите относительно поверхности планеты и округлите до целых.
  3. Частота обращения первого спутника на круговой орбите вокруг планеты в 2 раза больше, чем у второго, а радиус его орбиты в 4 раза меньше, чем у второго. Как соотносятся периоды вращения планет?
  4. Оцените скорость движения первого в мире искусственного спутника Земли. Считайте орбиту спутника круговой и расстояние от центра Земли до спутника равным 6 600 км. Сколько оборотов за сутки совершал спутник вокруг Земли?
  5. Если бы на круговую орбиту вблизи поверхности Луны был выведен искусственный спутник , то он двигался бы со скоростью 1,67 км/с. Определите радиус Луны, если известно, что ускорение свободного падения на её поверхности равно 1,6 м/с2.
  1. Определите ускорение конца секундной стрелки часов, если он находится на расстоянии R = 2 см от центра вращения.
  2. Какую скорость должен иметь искусственный спутник, чтобы обращаться по круговой орбите на высоте 600 км над поверхностью Земли? Каков период его обращения? Радиус Земли принять равным 6 400 км.
  3. Найдите линейную скорость Земли при её орбитальном движении. Средний радиус земной орбиты 1,5 * 100 000 000 км.
  4. Первая в мире орбитальная космическая станция двигалась со скоростью 7,3 км/с и имела период обращения 88,85 мин. Считая её орбиту круговой, найдите высоту станции над поверхностью Земли.
  5. Пропеллер самолёта радиусом 1,5 м вращается при посадке с частотой 2 000 мин-1. Определите скорость точки на конце пропеллера.
  1. Мальчик массой 50 кг качается на качелях с длиной подвеса 4 м. С какой силой он давит на сиденье при прохождении среднего положения со скоростью 6 м/с?
  2. Масса автомобиля с грузом 3 т, а скорость его движения - 20 м/с. Чему будет равна сила давления автомобиля на поверхность в верхней точке выпуклого моста, радиус кривизны которого 50 м?
  3. Мост, прогибаясь под тяжестью поезда массой 400 т, образует дугу радиусом 2 000 м. Определите силу давления поезда в середине моста. Скорость поезда считать равной 20 м/с.
  4. С какой скоростью должен двигаться мотоциклист по выпуклому участку дороги, имеющему радиус кривизны 40 м, чтобы в верхней точке выпуклости сила давления на дорогу была равна нулю?
  5. На нити вращается в горизонтальной плоскости шар массой 200 г, описывая окружность радиусом 1,5 м и делая 5 об/с. Определите силу натяжения нити. силой тяжести можно пренебречь.
  1. Самолёт делает "мертвую петлю" радиусом 100 м и движется по ней со скоростью 280 км/ч. С какой силой летчик массой 80 кг будет давить на сиденье самолёта в верхней точке петли?
  2. С какой скоростью должен лететь самолёт в верхней точке "мертвой петли", чтобы летчик был невесомым, если радиус петли 360 м?
  3. Ведерко с водой равномерно вращают в вертикальной плоскости на веревке длиной 0,5 м. С какой наименьшей скоростью нужно его вращать, чтобы при прохождении через верхнюю точку вода не вылилась из ведра?
  4. Тело, масса которого 20 г, движется по окружности радиусом 0,2 м со скоростью 90 м/с. Определите силу, действующую на тело.
  5. Железнодорожный вагон массой 10 т движется по закруглению радиусом 250 м со скоростью 36 км/ч. Определите силу, действующую на вагон.
  1. Автомобиль делает поворот при скорости 43,2 км/ч по дуге, радиус которой равен 60 м. Определите центростремительное ускорение.
  2. Самосвал массой 15 т движется со скоростью 36 км/ч по закруглению радиусом 50 м. Определите силу, действующую на самосвал.
  3. Трамвайный вагон массой 6 т идет со скоростью 18 км/ч по закруглению радиусом 100 м. Определите силу, действующую на вагон.
  4. Какова скорость тела, движущегося равномерно по окружности радиусом 3 м, если центростремительное ускорение равно 12 см/с2.
  5. С какой скоростью велосипедист должен ехать по средней части выпуклого моста с радиусом кривизны 10 м, чтобы не оказывать давления на мост?

fi2015.blogspot.com