Сколько стоит виртуальный шлем: VR очки виртуальной реальности для компьютера купить. Цены на VR шлема для ПК и консолей в интернет-магазине Virtulity Club

Содержание

Интернет: Интернет и СМИ: Lenta.ru

Люди перестали воевать в реальном мире. Проблемы красоты и восприятия себя забыты, потому что виртуальный аватар позволяет сделать свое тело и лицо такими, какими их видит сам человек. Работа, учеба, кинотеатры, концерты, спортивные и компьютерные игры, посещение врача и путешествия — для всего этого не нужно даже выходить из комнаты. Достаточно надеть VR-гарнитуру и отправиться по виртуальным делам. Благодаря технологиям виртуальной реальности, которые уже активно проникают во все сферы жизни, таким может стать уже недалекое будущее. Когда дорогая игрушка стала важнейшей частью производств, какие технологии виртуальной реальности используются уже сегодня и каким станет VR через несколько лет? «Лента.ру» рассказывает в рамках проекта «КиберРеальность».

Первому игроку приготовиться

«Телескопический телевизионный аппарат для индивидуального использования» — так американский кинематографист и изобретатель Мортон Хейлиг описал первый в мире шлем виртуальной реальности Telesphere, который он запатентовал в 1960 году. Внешне единственный в своем роде девайс был поразительно похож на те гарнитуры, которые выпускаются сегодня. Однако у Telesphere был заметный недостаток: он не умел отслеживать движения пользователя. Поэтому шлем можно было сравнить с надеваемым на голову телевизором. И пусть на рынке устройство ждал провал, оно оказало огромное влияние на будущее индустрии — не зря потомки окрестили его автора «отцом виртуальной реальности».

К компактному шлему Хейлиг пришел не сразу. За несколько лет до этого американец изобрел машину виртуальной реальности под названием «сенсорама» (Sensorama). Механическое устройство по форме и размерам напоминало аркадные игровые автоматы 80-х: в него были вмонтированы вентиляторы, акустическая система и даже излучатели запахов. Эффект присутствия обеспечивался за счет подвижного сиденья, которое тряслось в такт происходящему на экране. Все это помогало полностью погрузиться в контент. Первые испытатели могли в прямом смысле с ветерком прокатиться на мотоцикле по шоссе и почувствовать запах из выхлопной трубы. Новаторская технология впечатляла пользователей, но не инвесторов. Создание подходящих для этой машины виртуальной реальности 3D-фильмов было сложным и требовало немалых затрат. Бизнес в идею не поверил, поэтому сенсорама навсегда осталась лишь рабочим прототипом.

Коммерческий провал обоих проектов Хейлига не отпугнул людей, которые поверили в его идею. В 1968 году американский ученый-информатик, профессор Гарварда Айвен Сазерленд и его студент Боб Спроулл показали «Дамоклов меч» — первый полноценный VR-шлем, который подключался к компьютеру и отслеживал движения головы пользователя. Изобретение мало походило на современные шлемы: оно было настолько тяжелым, что его приходилось подвешивать к потолку — отсюда и возникло название.

Системой Сазерленда вскоре заинтересовались в государственных ведомствах США: НАСА и ЦРУ начали инвестировать в развитие VR-индустрии. В 1972 году General Electric на деньги военных построила один из первых авиасимуляторов. Тренажер выглядел как кабина с тремя экранами. Они имитировали окна самолета и обеспечивали 180-градусный обзор. Спустя пять лет американский художник Дэвид Эм по заказу НАСА создал интерактивную карту города Аспен, по которой пользователи могли перемещаться с помощью кнопок на клавиатуре. Прародительница Google Maps состояла из фотографий, сделанных из автомобиля, и компьютерной графики.

Через четыре года появились первые очки дополненной реальности. Устройство под названием EyeTap, которое придумал канадский ученый Стив Мэнн, не погружало пользователя в вымышленный мир, а добавляло штрихи поверх реального. Владелец очков мог увидеть графику или текст на фоне существующих объектов — людей, животных, домов. Это походило на то, как видел мир Терминатор из одноименного культового боевика. Правда, выглядели EyeTap так, будто их владелец собрался на войну с роботами. Технологии 80-х просто не позволяли вместить всю электронику в небольшое устройство: изобретение Мэнна занимало пол-лица и всю спину, так как подключалось к рюкзаку с компьютером, который пользователю приходилось носить с собой.

Разработки создателей первых VR-технологий нередко критиковали и высмеивали. Изобретение американского ученого Томаса Фернесса прозвали «шлемом Дарта Вейдера». Девайс действительно был огромного размера и странной формы. В то же время с его помощью пилот мог управлять самолетом с помощью жестов, речи и движений глаз.

Когда VR всерьез заинтересовались инвесторы, стало очевидно, что технология вскоре станет массовой. В этом отчасти помог известный американский ученый Джарон Ланье, которому приписывают авторство самого термина «виртуальная реальность». Позже энциклопедия Britannica включила его в список 300 крупнейших изобретателей в истории человечества, а на заре своей карьеры, в 1985 году, 25-летний разработчик вместе с коллегой Томасом Циммерманом основал компанию VPL Research. Американцы разработали довольно компактные для того времени очки с футуристичным названием EyePhone, а вместе с ними выпустили перчатки Data Glove — они умели отслеживать движения рук в цифровом пространстве. Проще говоря, люди видели движение своих рук в виртуальной реальности.

В 1990-е технологией VR заинтересовались разработчики видеоигр. Компания Virtuality Group придумала аркадные игровые автоматы с поддержкой VR, а SEGA выпустила первый VR-шлем. В 1995 году Nintendo представила консоль Virtual Boy, которая шла в комплекте с VR-очками. Однако все эти устройства не завоевали большой популярности: игр было мало, графика в них была плохой, а аксессуары стоили дорого.

К началу 2000-х интерес к виртуальной реальности у крупных IT-компаний и пользователей временно угас. Но всего через десять лет благодаря 18-летнему предпринимателю Палмеру Лаки в этой сфере произошла настоящая революция. Юноша был с детства одержим электроникой и компьютерными играми, обожал фантастические фильмы «Матрица» и «Газонокосильщик». Родители — продавец машин и домохозяйка — зарабатывали немного, поэтому Лаки приходилось оплачивать свое хобби самому. Подросток за небольшую плату ремонтировал iPhone и подрабатывал садовником. Деньги он тратил на компьютерное железо и старые VR-шлемы.

Существовавшие тогда на рынке модели не устраивали Лаки: шлемы были тяжелые и неудобные, с маленьким углом обзора и высокой задержкой сигнала. Поэтому в 16 лет школьник в отцовском гараже собрал собственную гарнитуру виртуальной реальности, прототип которой назвал PR1. Девайс удалось сильно облегчить за счет того, что он полагался на вычислительную мощность компьютера, к которому подключался по проводам.

84,1миллиарда долларов

может достичь рынок технологий виртуальной реальности к 2028 году

Изобретение Лаки вызвало настоящий ажиотаж: сначала юноша собрал почти 2,5 миллиона долларов на Kickstarter, а через пару лет его компанию выкупил Facebook за два миллиарда долларов. Состояние 23-летнего Лаки Forbes тогда оценивал в 700 миллионов долларов.

С тех пор появилось еще несколько шлемов от других крупных производителей. В 2015 году HTC показала гарнитуру Vive, годом позже Sony выпустила фирменный шлем для консоли PlayStation. В 2019 году в VR-гонку включилась Valve со своим шлемом Index. В 2020 году объем рынка технологий виртуальной реальности достиг 15,8 миллиарда долларов. К 2028 году он может вырасти до 84,1 миллиарда долларов, считают авторы отчета Fortune Business Insights.

VR-очки без рецепта

В кабинет врача заглядывает школьница Соня: у нее ДЦП, поэтому идти ей помогает бабушка. Девочка садится на стул, надевает специальные перчатки с датчиками и VR-шлем. С этого момента она уже не в белорусской клинике, а в виртуальной реальности. Вокруг — лесной пейзаж. Перед Соней в воздухе висит огненный шар, который нужно взять в руку и забросить в ледяную лунку. В реальном мире девочка не смогла бы совершить такое движение из-за болезни, но в цифровом пространстве правила другие: руками можно вращать почти без ограничений.

«Пластичность мозга позволяет нам в некотором смысле обмануть природу, то есть получить новые ассоциативные связи, где другие участки мозга берут на себя поврежденную функцию. В этом помогает виртуальная реальность», — объясняет смысл использования VR главный врач Минского городского центра медицинской реабилитации детей с психоневрологическими заболеваниями Александр Яковлев.

Такие программы используют для того, чтобы помогать людям восстанавливаться после инсульта, черепно-мозговых травм и травм позвоночника. В виртуальной реальности процесс происходит эффективнее, ведь восстановление подвижности конечностей можно совместить с игрой или каким-нибудь приятным занятием — например, с поездкой на велосипеде. В России и за рубежом уже есть комплексы, которые помогают пациентам быстрее прийти в себя с помощью VR-шлема. Например, в клинике медицинской реабилитации Пироговского центра внедрили решение компании «Девирта-Делфи», которое помогает восстанавливать движения крупных суставов и мелкую моторику. Человеку надевают очки и просят его поплавать с дельфином — это часть упражнения, восстанавливающего двигательные функции.

Специальный VR-комплекс может ускорить реабилитацию пациентов после инсульта на 30 процентов, уверяют сотрудники Центра компетенций Национальной технологической инициативы на базе Дальневосточного федерального университета. Похожую систему для борьбы с последствиями инсульта используют и в университете Южной Каролины. Ученые считывают мозговые и мышечные сигналы пациента с помощью датчиков, а затем объединяют их в виртуальной реальности — человеку кажется, что он двигается в цифровом мире самостоятельно. По словам экспертов, такой подход улучшает восстановление функций конечностей.

30процентов

— на столько упражнения в VR способны ускорить реабилитацию пациентов после инсульта

Аэрофобия, боязнь насекомых, алкоголизм — даже эти проблемы можно будет решить с помощью виртуальной реальности. Например, тем, кто боится высоты, может пригодиться разработка итальянского стартапа PhobiaVR: чтобы побороть страх, человеку предлагают в виртуальной реальности пройти по натянутой над каньоном веревкой. Российский проект Rewire Education помогает бороться с аутизмом: разработчики придумали специальную VR-игру, помогающую развиваться детям с этим недугом.

Существуют исследования, которые доказывают, что VR помогает бороться даже с депрессией. В 2016 году британские и испанские ученые выдали добровольцам шлемы виртуальной реальности. Надевая гарнитуру, пациенты попадали в комнату, где видели своих плачущих цифровых двойников, которых нужно было успокоить. Через несколько минут ситуация менялась: двойники повторяли людям утешительные слова, которые им говорили раньше. После нескольких сеансов девять из пятнадцати добровольцев сообщили, что меньше страдают от депрессивных симптомов.

В будущем VR станет незаменимым инструментом в медицине, уверен основатель стартапа VR Cast Анатолий Горонеско. Его компания занимается прямой трансляцией крупных российских и мировых событий в формате 360 градусов. По словам Горонеско, лучшие специалисты всего мира будут использовать виртуальную реальность для совместной удаленной работы. Например, они смогут устраивать виртуальные консилиумы.

Петров, к виртуальной доске!

Студентка Ноттингемского университета Ребекка Кей как минимум раз в неделю надевает дома шлем виртуальной реальности и отправляется на созданный в виртуальной реальности остров под названием Nottopia. Вместе с ней на этом вымышленном клочке земли находятся около 50 аватаров ее однокурсников, студентов инженерных специальностей, которые слушают мини-лекции и участвуют в семинарах на тему моделирования и VR. Им не нужно носить маски или соблюдать социальную дистанцию — в виртуальности нет никакой пандемии.

Похожие занятия проходят и в других странах. Филиппинский университет Себу запустил несколько VR-курсов, которые можно посещать из дома. В России школьников постепенно готовят к погружению в виртуальную реальность с помощью проекта «Цифровая школа». По планам авторов инициативы, к 2024 году четверть образовательных учреждений страны будет использовать VR-шлемы. К концу 2021 года не менее 12 тысяч школьников в 25 регионах должны будут осваивать учебный материал с помощью VR. За это отвечает проект «Цифровая образовательная среда».

Почему обучение вообще переводят в VR? Как минимум потому, что эта технология позволяет погрузить человека в симуляцию какого-то процесса или явления: провести опасный эксперимент или подготовиться к чрезвычайной ситуации, говорит президент Modum Lab Дмитрий Кириллов. Его компания разрабатывает иммерсивные образовательные симуляции для производств и корпоративного обучения и создает обучающий AR/VR-контент для школьников.

В случае с обычным видео человек просто наблюдает за происходящим на экране монитора, а в случае с VR он попадает в эту ситуацию и проживает ее, говорит Кириллов. Например, в симуляторе пожара от компании DreamPort можно тренировать офисных сотрудников. Надев очки, человек попадет в копию своего кабинета, детально воссозданную в виртуальном мире. В какой-то момент испытуемый увидит дым, а затем услышит голос помощника. В это время на экране будут отображаться подсказки, как спасти себя и коллег.

Анатолий Горонеско называет VR незаменимым инструментом для создания образовательных симуляций и практикумов. Специалист отмечает, что подобные технологии решают основную проблему современных людей — нехватку времени.

В будущем классная система уступит место системе персонального образования, считает автор проекта цифровых двойников Viperson Роман Душкин. Он утверждает, что привычное взаимодействие педагог — ученик уйдет в прошлое: VR позволит подобрать учебную программу для детей, основываясь на их индивидуальных потребностях.

VR серьезно повлияет на сферу образования, но будет не единственным способом донести информацию до учеников, уверен президент Modum Lab Кириллов.

VR не заменит классические форматы, он станет одним из инструментов. Уже сейчас появляются гибридные курсы, в которых знания человек получает через классические электронные форматы (статьи, видео), а навыки отрабатывает в виртуальной среде. Как нам кажется, это максимально эффективный способ применения технологии

Дмитрий Кириллов, президент Modum Lab

Независимые исследования подтверждают: обучение в виртуальной реальности сильно помогает усвоению материала. По данным исследования PwC за 2020 год, использовавшие VR-гарнитуру студенты сосредотачивались на теме в четыре раза лучше, чем те, кто посещал лекции онлайн.

Эффект погружения воздействует на базовые рефлексы человека, объясняет руководитель направления «Виртуальная и дополненная реальность, технологии геймификации» IT-кластера фонда «Сколково» Алексей Каленчук.

«Такое влияние в образовании напрямую воздействует на запоминаемость. Более того, VR-симуляции на 100 процентов держат внимание обучаемого, то есть он не может в процессе обучения отвлекаться на смартфон и иные раздражители», — объясняет специалист.

VR без ЧП

Вы наблюдаете со стороны за человеком, который пришел в магазин за покупками. Его день явно не задался: на работе проблемы, на банковской карте кончились деньги. Рядом кто-то разбил бутылку с алкоголем, но сотрудники супермаркета свалили вину на него. Вот почему он подходит к кассе в ужасном настроении.

Описанная выше ситуация — часть VR-курса для кассиров сети магазинов «Перекресток». Созданная российской компанией Modum Lab программа должна обучить сотрудника магазина эмпатии: увидев страдания незнакомого человека, в будущем кассир будет вежливее себя с ним вести. Есть и схожие программы, рассчитанные на консультанта торгового зала сети. Успешный пилот уже развернули в сотне региональных точек.

«Четыре месяца мы готовили виртуальную среду — трехмерную копию одного из магазинов, включая административные помещения и склад. 3D-дизайнеры создали модель по тысячам фотографий. Нужно было добиться максимальной достоверности, вплоть до выкладки товаров на стеллажах и детализации вывесок. Чем больше виртуальная среда похожа на настоящий магазин, тем эффективнее обучение: проще поверить в реалистичность происходящего и преодолеть психологический барьер, общаясь с ботом», — рассказывает президент Modum Lab Дмитрий Кириллов.

Подобная практика не нова: еще раньше американский Walmart закупил более 17 тысяч шлемов Strivr Oculus VR , чтобы обучать своих сотрудников. Программу подготовки прошли более миллиона человек по всей стране.

Если консультант отказывается пройти VR-обучение, он не рискует ничем, кроме будущей зарплаты, чего не скажешь о специалистах, чьи профессии связаны с риском для жизни других людей. Им особенно важно пройти полноценную подготовку. С недавних пор сделать это можно и в виртуальной реальности. В 2019 году «Росэлектроника», дочка «Ростеха», показала комплексный VR-тренажер, который можно настроить на обучение пожарных, саперов, сотрудников МЧС и летчиков. Это позволяет освоить навыки работы в экстремальных условиях без малейшего риска для здоровья.

О плюсах использования технологии виртуальной реальности в образовании говорит и Екатерина Филатова, президент Ассоциации дополненной и виртуальной реальности. По ее словам, VR позволяет человеку оказаться в таких местах, куда добраться в реальности сложно, дорого или опасно. При этом тренировки можно повторять столько раз, сколько нужно для отработки навыков. Например, когда VR-шлемы используют для тренинга персонала атомной станции, сотрудники могут побывать даже в тех отсеках, доступ в которые обычно ограничен.

Кроме того, с помощью виртуальных копий труднодоступных мест при обучении можно проиграть все возможные варианты развития событий, даже чрезвычайные ситуации. Еще один существенный плюс технологии — возможность быстро вносить в обучение корректировки, когда это необходимо.

Ставка на VR обоснована еще и экономически, продолжает руководитель направления IT-кластера «Сколково» Каленчук. Виртуальные симуляторы существенно экономят деньги. Проигрывать экстремальные сценарии в офлайне гораздо дороже: нужно потратиться на макеты оборудования, необходимые агрегаты, кабины спецтехники, найти подходящее помещение. В VR же достаточно все это нарисовать.

Мета-мета, пост-пост

«На прошлой неделе Алекс Кипман из Microsoft, создатель технологий Kinect и HoloLens, появился в моей гостиной, чтобы вручить мне (виртуальных) медуз и акул. Может показаться, что мне приснился странный сон, но это была встреча, которая стала возможной благодаря новой платформе Microsoft Mesh», — так начал свой репортаж журналист Том Уоррен, который одним из первых испробовал новый виртуальный сервис в марте 2021 года. Эта платформа помогает при удаленной работе: теперь люди с разных концов планеты могут работать совместно и почти осязаемо. Достаточно надеть VR-очки HoloLens — и можно увидеть аватары коллег и друзей, которые словно стоят рядом.

Mesh — это прототип так называемой метавселенной, о которой уже давно грезят футурологи и миллиардеры. Дубликат нашей реальности в цифровом мире не дает покоя не только Microsoft, но и Facebook. Еще в июле 2021 года основатель соцсети Марк Цукерберг анонсировал превращение его платформы в метавселенную. По планам миллиардера, пользователи смогут подключаться к ней с помощью AR/VR-гарнитур.

«Видение метавселенной охватывает всю индустрию, вы можете считать ее преемником мобильного интернета, воплощенном в интернете, где вместо того, чтобы просматривать контент, вы находитесь в нем. Вы ощущаете присутствие других людей, словно находитесь в других местах. Испытываете ощущения, которые недоступны с помощью двухмерных приложений или веб-страниц, — например, танцуете или занимаетесь фитнесом», — объяснял Цукерберг.

У корпорации есть платформы Portal и Oculus, которые позволяют «телепортировать» человека к его собеседникам, которые с помощью очков будут видеть в помещении его аватар. Правда, у технологии есть один существенный недостаток: перемещать аватар из одного виртуального пространство в другое пока нельзя. Сейчас Facebook работает над созданием «соединительной ткани», благодаря которой перемещение между пространствами станет таким же простым, как переход из одной комнаты в другую в реальной жизни.

Первым шагом к появлению метавселенной можно считать проект Horizon от Facebook. В августе соцсеть представила инструмент, позволяющий сотрудникам компании имитировать командные собрания в виртуальной реальности. Для входа в цифровое пространство нужен шлем Oculus Quest 2 и рабочий ноутбук. Так сотрудники смогут не терять связь с коллективом во время удаленной работы.

«Я думаю, что за метавселенными — будущее VR», — убежденно отвечает Кириллов на вопрос о потенциальном успехе концепции. Его поддерживают и другие эксперты.

Но для полноценного погружения в VR одного шлема недостаточно, и разработчики это понимают. Чтобы человек поверил в происходящее на экране, нужно задействовать больше человеческих чувств. Проблему осязания попробовали решить авторы стартапа Wireality. Исследователи из Университета Карнеги — Меллона создают перчатки, которые позволяют трогать предметы в цифровом мире. У пользователей создается впечатление, что они прикасаются к реальным вещам.

Российский специалист из университета ИТМО Константин Малышев пошел дальше. Он изобрел прототип устройства, которое передает запахи в виртуальную реальность. Пока набор ароматов ограничен, но в будущем их количество можно будет расширить.

Полная свобода

Еще несколько лет назад скептики не верили в VR сразу по нескольким причинам. Во-первых, гарнитуры были дорогими и не слишком удобными. В 2016 году пользователи отдавали по 600 долларов за Oculus Rift и получали проводной шлем, который можно было использовать в основном для игр или просмотра фильмов, но подходящего для этого контента было мало. Конкурент HTC Vive VR стоил на 200 долларов дороже.

Кроме того, пользователи первых гарнитур часто жаловались на недомогание: после пребывания в виртуальной реальности у одних кружилась голова, другие чувствовали тошноту, у третьих чесались и болели глаза. С таким набором негативных последствий о светлом виртуальном будущем можно было и не мечтать. Однако эксперты уверяют: все эти проблемы остались в прошлом.

От проводов уже отказываются, появляется новый стандарт автономных шлемов, которые могут работать без компьютера, говорит президент Modum Lab Кириллов. «Устройства дешевеют и становятся более доступными. Можно зайти в крупный магазин электроники и почти наверняка купить там VR-шлем, который будет стоить не дороже игровой приставки», — добавляет он.

В обозримом будущем VR-устройства будут похожи на обычные очки, у которых появится голосовое управление и способность показывать виртуальные объекты в реальной среде, считает президент Ассоциации дополненной и виртуальной реальности Екатерина Филатова. Скорее всего, у них будет возможность переходить в режим виртуальной реальности.

Неприятные ощущения при использовании VR-шлемов могут быть связаны и с программным обеспечением, подчеркивает Филатова. Если пользователя укачивает — значит, разработчик не учел особенности физиологии и поведения человека в виртуальном пространстве, недостаточно протестировал контент перед запуском. Впрочем, специалистка отмечает, что на VR-рынке в России и в мире достаточно много команд, которые создают качественный контент для виртуальной реальности.

В будущем VR-гарнитура будет выглядеть так, как в сериале «Черное зеркало», думает автор проекта цифровых двойников Роман Душкин. В одной из серий героям вживили чипы, которые позволяли записывать все происходящее перед глазами. Эксперт считает, что в конце концов человечество придет к подобным нейроинтерфейсам, которые позволят выходить в виртуальную или дополненную реальность без каких-либо шлемов.

«VR-гарнитуры будут изначально встроены в каждого человека на уровне нейроинтерфейса — с выводом информации прямо на зрительную кору, то есть минуя глазные нервы. Это идеальный вариант, но до этого еще достаточно долго. Может быть, лет 100, может, 50. Тут можно гадать сколько угодно. Но технологии развиваются настолько стремительно, что и через десять лет это может стать реальностью, — предрекает Душкин.

Вреден ли VR для здоровья?.

VR в современном виде — технология… | by Karolina Podpletko | Modum Lab

VR в современном виде — технология новая. Стимулом к развитию виртуальной реальности стал выход очков Oculus DK1 в 2013 году, а первый потребительские VR-шлемы Oculus и PSVR появились только три года назад. Тогда же началось активное применение технологий в корпоративном обучении и детском образовании. Вместе с повышением интереса к VR/AR и первыми исследованиями об их эффективности появились и мнения о вреде виртуальной реальности для здоровья.

Технологии виртуальной реальности — многообещающий способ улучшить и трансформировать детское и корпоративное обучение. По нашим наблюдениям, большинство пользователей позитивно настроены к VR и понимают, что внедрение новых технологий позволит проще объяснять сложные темы, повысить интерес у детей и взрослых к новым знаниям, унифицировать тестирование, упростить процесс запоминания новой информации. Но не все преподаватели, бизнес-тренеры и родители школьников настроены столь же оптимистично. Некоторые из них считают, что VR негативно скажется на здоровье пользователей. Родители, опасаясь за детей, задаются вопросами: не способствуют ли VR-очки развитию близорукости (миопии), не скажется ли VR негативно на осанке молодых людей? И скептиков можно понять, ведь их опасения не были опровергнуты реальными исследованиями, а информации о технологии в открытых источниках всё ещё недостаточно. Оптимальное и безопасное время пребывания в иммерсивной среде для детей и взрослых также до сих пор не определено.

Из-за молодости технологии медицинских исследований её влияния на людей было проведено немного, а единого вердикта учёных относительно безопасности использования VR-очков до сих пор не существует. Чтобы лучше разобраться в противоречивом вопросе и выяснить, представляет ли просмотр контента в шлеме виртуальной реальности угрозу для здоровья, мы постарались собрать актуальные исследования. Особое внимание в статье уделено часто задаваемым вопросам — как VR влияет на зрение и вестибулярный аппарат?

Усталость глаз в VR — это субъективно или объективно?

Иногда после одного из первых опытов эксплуатации VR-очков пользователи сообщают о возникших неприятных ощущениях: усталости глаз или напряжении. Влияние дисплеев виртуальной реальности на зрение — вопрос открытый. Некоторые считают, что VR ничем не хуже обычного ноутбука, а главное — не переборщить со временем нахождения в иммерсивной среде. В конце концов, неприятная сухость и покраснения в области глаз появляются и после долгого времяпрепровождения перед привычными нам экранами телевизора или компьютера. Другие — бьют тревогу и навсегда отказываются от использования VR-шлемов. Сделать объективные выводы, учитывая состояние здоровья всех пользователей, в наши дни пытаются медики и первые исследователи технологии.

Ученые трёх разных кафедр медицинского факультета университета Осаки в Японии в 2019 году попытались выяснить причины появления неприятных ощущений в глазах после использования VR-оборудования. Для этого профессорам университета пришлось найти пользователей, которые утверждали, что очки виртуальной реальности доставляют дискомфорт их глазам. Это исследование было направлено на оценку объективной и субъективной усталости, ощущаемой до и после выполнения визуального задания при использовании дисплея виртуальной реальности (VR-HMD), а также двумерного (2D) дисплея.

Рис.1 Эксперимент по оценке усталости глаз университета Осаки. Оборудование: 2D-дисплей (слева) VR-очки (справа)

Двенадцать здоровых людей разделили на две группы. Одним добровольцам контент показали на обычном 2D-экране, а вторым — на HMD-дисплее (head-mounted display). После просмотра контента контрольные группы выполнили ряд тестов и заполнили анкету, где были проверены их субъективные ощущения до и после выполнения визуального задания на разных экранах. Кроме того, каждый из участников до и после пребывания в иммерсивной среде или просмотра фильма в течение 15 минут прошел подробное офтальмологическое обследование, включающее проверку остроты зрения на расстоянии (5,0 м), вблизи точки схождения, фьюжн диапазона схожести, остроту стереозвука (Titmus Stereo Tests; Stereo Optical Co., Inc, Чикаго, США) и угол отклонения с помощью теста с альтернативным призменным покрытием как вблизи (33 см), так и на расстоянии (5,0 м). Всем испытуемым также было предложено заполнить опросник из семи пунктов до и после завершения эксперимента. Вопросы 1–3 были разработаны для оценки субъективных глазных симптомов, а в вопросах 4–7 оценивались физический и психологический дискомфорт.

В результате проведенного эксперимента ученые пришли к выводу, что субъективная оценка усталости зрения существенно не отличалась, как при использовании шлема виртуальной реальности ( VR- HMD), так и при эксплуатации двумерного дисплея: люди говорили об одинаковых ощущениях. Медицинское обследование глаз пользователей также не выявило каких-либо серьёзных изменений.

«Объективная и субъективная оценка усталости зрения существенно не отличалась при использовании дисплея виртуальной реальности ( VR- HMD) и двумерного дисплея. Это может говорить о страхе перед новым форматом, но не являться реальной угрозой», — уточнили исследователи.

Основные опасения, относительно здоровья глаз и влияния на них виртуальной реальности у пользователей обычно связаны с очень близким расположением дисплея к глазам и мощным линзам. Для того, чтобы выяснить, влияют ли VR-устройства на развитие близорукости, учёные из Новой Зеландии сравнили бинокулярный статус глаз после 45-минутных испытаний как в реальном, так и в виртуальном мире. Они также измерили изменение толщины сосудистой оболочки глаза, чтобы оценить вероятное наличие сигналов для развития миопии.

В исследовании приняли участие 40 здоровых человек, которых разделили на две группы: одна находилась 45 минут на улице, а другая в очках виртуальной реальности бродила по виртуальному саду. Обе группы до и после эксперимента проверили офтальмологи.

Рис.2 Исследование новозеландских учёных. Виртуальная и реальная среда, в которую были погружены пользователи

Выяснилось, что толщина хориоидеи глаза не изменилась после испытаний в реальном мире, но было незначительная утолщение после каждого испытания перед 2D-дисплеем и в VR. Однако такое изменение учёные назвали совершенно нормальным и не оказывающим влияние на зрение.

Наблюдаемое медиками утолщение сосудистой оболочки позволило им предположить, что гарнитура VR не может быть стимулом для близорукости, несмотря на очень близкое расстояние просмотра контента.

Выводы этих исследований могут говорить о том, что страхи в этом вопросе не подтверждаются. В конце концов, когда в 1837 в Петрограде был введен в эксплуатацию первый поезд, пассажиры опасались ездить на нём и полагали, что такая немыслимая скорость (50 км/ч) может вызвать резкие головные боли и привести к смерти. Сегодня, по прошествии почти 200 лет, такие доводы кажутся нам неактуальными и даже смешными. Подобные опасения пользователей были впоследствии свойственны очень многим изобретениям, без которых мы уже не представляем жизнь: телефону, телевизору, компьютеру и планшету. При этом, изучая все эти технологичные составляющие нашей жизни, учёные сошлись во мнении — всё хорошо в меру. Вполне очевидно, что к виртуальной реальности данное утверждение также применимо.

Изучение влияния VR на зрение людей не ограничивается только попытками учёных доказать вред технологии. Сегодня офтальмологи задумываются об использовании VR для лечения офтальмологических заболеваний.

Например, в Китае, где близорукость стала проблемой общественной гигиены, которая угрожает здоровью огромного числа людей, учёные Нанкинского медицинского университета в 2018 году попытались использовать VR для профилактики этого недуга. Наблюдая за более, чем 20 подростками (7–16 лет), исследователи поставили цель ответить на два вопроса: можно ли использовать устройства VR для профилактики и контроля близорукости и являются ли существующие устройства VR безопасными для молодых пользователей?

Основные доводы в пользу использования VR-дисплеев для профилактики и лечения близорукости состояли в сходстве уже существующих методов лечения и возможностей, предоставляемых VR-дисплеями: изменением глубины резкости, дефокусировкой, регулировкой интенсивности и спектрального состава света. Интересно, что во время проводимых манипуляций, для понижения уровня стресса в VR-формате подросткам демонстрировали природу.

Во время проведений исследования о возможном применении VR для профилактики и леченения близоруковсти, учёные столкнулись с рядом вопросов и сложностей. Прежде всего, из-за того, что большинство существующих VR-очков имеют относительно низкое разрешение, а потому не способны создавать чёткость изображения, необходимую медикам. Во-вторых, поле зрения большинства существующих устройств VR относительно мало и может еще больше ускорить возникновение близорукости.

Учёные также провели предварительное исследование, в рамках которого 23 ребёнка в возрасте 7–16 лет провели 30 минут, играя в VR-игру. После этого дети были обследованы и выяснилось, что ни один ребенок не испытал серьёзного ухудшения состояния их зрения. При этом важно отметить, что в трех случаях острота их зрения и способность обнаружить различия в расстояниях были нарушены на короткое время. У одного ребенка медики зафиксировали краткосрочное ухудшение баланса зрения. Здесь всё же важно отметить, что в статье не указано используемое в рамках эксперимента оборудование, а во многом восприятие контента и нагрузка на глаза зависят от модификации VR-шлема.

«По указанным выше причинам , мы считаем, что в будущем можно использовать технологию VR для профилактики близорукости и контроля », — подытожили исследователи.

Исследователи также отмечают: в целях обеспечения безопасности подростков и детей, которые используют устройства VR, необходимо лучше исследовать технологию и решить следующие задачи:

1. Некоторые параметры устройств виртуальной реальности, такие, как межзрачковое расстояние, разрешение, интенсивность света и поле зрения, в будущем должны быть улучшены для того, чтобы соответствовать физиолого-психологическим характеристикам подростков или детей.

2. Дальнозоркость и миопическая расфокусировка у пользователей способствуют размытому изображению на VR-дисплее. Пока еще не совсем ясно, вызвано ли размытое изображение в периферической сетчатке миопической или гиперметропической расфокусировкой. Поэтому простое сочетание рендеринга с методами отслеживания глаз не может идеально имитировать миопический дефокус на периферии сетчатки глаза.

3. Многие исследования ещё должны быть проведены для объективной оценки рисков и преимущества использования VR-устройств для подростков.

Обобщил ряд сделанных учеными за 2 года исследований о VR (конец 2017 — начало 2019 гг) Доктор Хадери из Медицинской школы Кека Университета Южной Калифорнии. Хадери проанализировал 12 актуальных исследований о влиянии VR на здоровье глаз и попытался узнать, представляют ли волны синего света от дисплеев угрозу для сетчатки глаза.

Рис.3 Исследование медицинской школы Кека. Сетчатка глаза наиболее чувствительна к голубому свету в диапазоне от 430 до 470 nm. Этот свет излучают большинства экранов электронных устройств

По словам автора, активное изучение волн синего света началось в 1970-х годах. Чуть позже, в 1990-х ученые пришли к выводу о том, что фотохимические повреждение глаз происходит в нижней части видимого спектра а также, что сетчатка глаза человека наиболее чувствительна к синему свету. Похожие волны света излучают известные нам смартфоны, компьютеры и VR-очки. При этом автор отмечает, что за 10 лет проводимых исследований учёными было описано только 2 случая, когда волны света от экрана телевизора или смартфона вызвали повреждение сетчатки глаза. Поэтому, в целом, излучение от экранов привычных для нас устройств принято считать безопасным. Ситуация же с VR-оборудованием несколько другая, так как глаза находятся на очень близком расстоянию к экрану.

Рис. 4 Исследование медицинской школы Кека. Излучение синего света от экранов разных устройств

Автор отмечает, что согласно оценке института здравоохранения США, средний американец тратит 7,4 часов в день перед экранами устройств в 2016 году.

Хадери удалось найти несколько небольших исследований, где был выявлен дискомфорт пользователей при эксплуатации HMD-дисплеев в VR-шлемах (+-2 часа нахождения в шлеме). При этом никаких долгосрочных эффектов на зрение учеными замечено не было.

Прямое влияние этих экранов на разрушение сетчатки глаза не доказано, однако, смартфоны, компьютеры и планшеты сегодня отнесены к «группе риска». Для обеспечения безопасности пользователей автор предлагает отнести VR-очки к этой же группе риска, но при этом отмечает:

«судя по имеющимся данным, современные потребительские электронные VR-дисплеи не представляют серьезного риска для зрения при рекомендованном производителем времени использования».

Наряду с безопасностью для зрения, говоря о VR, у пользователей часто возникают вопросы об укачивании. Это неприятное ощущение учёные также пытаются объяснить с медицинской точки зрения. Чтобы выявить существование синдрома укачивания в иммерсивной среде, многие теории были разработаны или адаптированы из исследований укачивания на воде и в воздухе. При этом самым популярным методом измерения укачивания для ученых является опросник. Также предпринимались попытки обнаружить конкретные физиологические показатели описанного синдрома, но по этому вопросу до сих пор не было сделано однозначного заключения.

В 2011 году исследователи Мосс и Мунт из Клемсенского университета проверили несколько характеристик дисплеев (отметим, что данные дисплеи довольно старые) виртуальной реальности, чтобы изучить эффект длительного воздействия виртуальной среды на человека. Задача участников состояла в том, чтобы найти несколько объектов в виртуальной среде (виртуальной лаборатории), используя только движения головы. Каждый из 15 участников прошел две тренировки и пять двухминутных испытаний с перерывами в одну минуту между ними. Результаты исследования учёные выявляли при помощи анкетирования.

Был получен ряд результатов: до эксперимента, после тренировки, после каждого испытания, через 5 и 10 минут после эксперимента. Было отмечено, что тяжесть симптомов симуляционной болезни увеличивалась со временем — был выявлен значительный эффект продолжительности воздействия ВР. Наиболее серьезные симптомы были отмечены после последнего испытания.

Таким образом, исследователи выявили, что увеличение времени пребывания в виртуальной среде может негативно сказаться на субъективных ощущениях, связанных с синдромом укачивания

Расширили предыдущее исследование в 2017 году ученые из корейского Католического университета Пусана. Их выводы также предоставляют информацию о временных характеристиках симуляционной болезни, но при движении пользователя в иммерсивной среде. В их экспериментальный проект были включены три типа управления ходьбой:

(1) геймпад,

(2) датчики, определяющие движения рук

(3) походный симулятор с датчиками и переносными датчиками с креплением к ногам

Все участники исследования были ознакомлены с тремя различными средами виртуальной реальности: мультипликационный город, реалистичная природная среда и нереалистичная среда. При этом каждый из участников выполнил девять опытов в виртуальной реальности. В исследовании симуляционная болезнь измерялась с помощью опросника.

Авторы сообщили, что симптомы болезни на тренажере со временем стали более выраженными, хотя в целом они были средней степени тяжести.

Приведенные выше результаты исследования подтверждают гипотезу о том, что тяжесть имитационной болезни действительно может увеличиться со временем, но может различаться в зависимости от многих переменных (например, типа VR-очков и контента, его характеристик, продолжительности всего воздействия, возраста, эмоционального и других индивидуальных характеристик участников).

Постуральная устойчивость и признаки симуляционной болезни после ходьбы по беговой дорожке в виртуальной среде в 2017 году были исследованы учеными из Торонто Синицким, Томпсоном и Басеманном. Тридцать здоровых участников исследования были набраны через вооруженные силы Канады.

Рис. 5 Эксперимент Центра исследований Торонто. Данные участников

Все участники были в отличной медицинской форме и признаны годными для службы. Все 28 участников выполнили одни и те же задания в очках виртуальной реальности: они 45 минут шли по беговой дорожке с наклоном от ± 5 ° и ± 10 °. При этом в VR-шлеме участники эксперимента видели дорогу в виртуальном парке с деревьями и кустарниками. Всего были оценены 16 симуляционных симптомов болезни в трёх категориях: тошнота, глазная дезориентация и дезориентация движений. Чтобы лучше понять, как усталость от ходьбы на беговой дорожке повлияла на нарушения ориентации в пространстве, учёные также измерили показатели потливости у каждого участника группы.

Результаты продемонстрировали незначительное усиление симптомов дезориентации после первых 15 минут воздействия виртуальной среды. При этом к концу сеанса эти симптомы у людей практически сошли на нет, что может говорить о выработке привычки к нахождению в VR.

В конце эксперимента лёгкие симптомы симуляционной болезни после погружения, включая усталость глаз, головную боль, трудности с фокусировкой и головокружение испытывали 25% участников. При это исследователи отмечают, что все участники были в состоянии успешно завершить эксперимент, не превышая «легкий» или допустимые уровни симптомов кибер-болезни.

Другое исследование, подтверждающее гипотезу о привыкании к VR, было проведено группой немецких ученых в 2017 году. В эксперименте, состоявшем из двух частей, разделенных перерывом на 7–14 дней, приняли участие 28 участников. В первый день состоялось шесть 20-минутных поездок в дорожном VR-симуляторе, а во второй день их было четыре.

Рис. 6 Исследование о привыкании к VR. Примеры VR-среды, в которую были погружены участники эксперимента

Авторы сообщают интересную картину результатов.

Во время обоих сеансов выраженность симптомов действительно увеличивалась, но это увеличение было менее заметным во время второго сеанса.

Рис. 7 Рис. 6 Исследование о привыкании к VR. Разница результатов укачивания в первый и второй день исследования

Таким образом, эффект адаптации был доказан, но при этом полного исчезновения симптомов не было зафиксировано. В статье подчеркивается, что к первому погружению в VR следует относиться с особой осторожностью — субъекты должны подвергаться мониторингу на наличие неприятных симптомов, периоды между испытаниями должны быть длиннее, а сами испытания — как можно короче.

Учёные из Ягеллонского университета в Польше попытались выявить и объяснить три временных аспекта «симуляционной болезни»: временное прогрессирование укачивания, возможность предварительной адаптации пользователей к VR и постоянство симптомов после воздействия ВР. Для этого исследователи изучили 39 уже имеющихся работ с 1998 по 2018 год на эту тему и сделали значимые выводы.

В первую очередь, исследователи провели анализ работ и выявили факторы, которые можно отнести к симптомам укачивания. Ими оказались: тошнота, потливость, затруднение концентрации внимания, неприятные ощущения в районе желудка, глазодвигательные нарушения, головная боль, напряжение глаз, затуманенное зрение, дезориентация, головокружение с открытыми и закрытыми глазами.

Также учёные выявили, что симптоматология и тяжесть недомогания зависят от многих переменных — например, возраста, пола, стресса, беспокойства, индивидуальной склонности к такому заболеванию или характеристик самого тренажера.

Кроме того, исследователи предположили, что удовольствие, полученное во время тренировки на VR-тренажере, может привести к облегчению симптомов болезни.

Ученые из отделения отоларингологии хирургии головы и шеи, больницы Гуро при Корейском университете пришли к выводу о том, что VR в ряде случаев, действительно, может вызвать постуральный дисбаланс для пользователей.

В экспериментальную группу вошли 20 человек в возрасте от 21 до 35 лет с нормальной переносимостью укачивания, без наличия хронических и иных заболеваний. Всем добровольно согласившимся на эксперимент взрослым показывали разные симуляции на устройстве Samsung Gear VR.

В рамках исследования выяснилось, что разные VR-симуляции оказывали на пользователей разный эффект: где-то процент укачивания был выше, а где-то его почти не наблюдалось.

Это также говорит о наличии связи между качеством разработки контента и субъективными ощущениями пользователей.

Ещё одно исследование влияния виртуальной среды на укачивание провели американские учёные, обучая группу людей навыкам вождения в VR.

В общей сложности 58 младших (в возрасте 18–35 лет) и 63 старших (в возрасте 65+) участников были случайным образом распределены в одну из четырех экспериментальных групп (только визуальная, визуальная + слуховая, визуальная + двигательная, тримодальная). До первой и после последней сессии вождения стабильность позы участников измерялась с помощью силовой пластины.

Рис. 8 Исследование об укачивании в VR американских учёных. Схема расстановки оборудования в эксперименте

Восприимчивость к симуляционной болезни измерялась до начала эксперимента с помощью анкетирования. Из-за неприятных ощущений 36 из 121 участников были вынуждены бросить учебу до окончания экспериментального задания. Интересно, что общее время для восстановления между участниками, выполнившими задание, и теми, кто выбыл ранее, значительно варьировалось — последним требовалось больше времени для восстановления. Тем не менее, только пять человек (все они — из выбывшей группы) не полностью восстановились через 15 минут после воздействия VR. Кроме того, у всех участников наблюдалось значительное снижение тяжести симптомов симуляционной болезни между моментом после воздействия и 3 минутами позже. Уже после трёх минут у всей группы какие-либо симптомы полностью исчезали.

Также исследователи предположили, что тяжесть симптомов быстро меняется

она ​​увеличивается сразу после воздействия VR, но значительно снижается через 15 минут после пребывания в виртуальной среде.

Отметим, что большинство результатов вышеприведенных экспериментов основаны на субъективных ощущениях пользователей. Кроме того, в ряде исследований нет информации о VR-оборудовании, на котором были осуществлены замеры изменения состояния пользователей, а также о разработчиках симуляций, участвовавших в экспериментах.

Важно понимать, что во всех случаях комфорт человека сильно зависит от предлагаемого ему контента, а также от моделей используемых VR-шлемов. Кроме того, учёные признают, что для повышения качества исследований необходимо продолжить изучение технологии и вывести новые шкалы мер изменения физического состояния людей после использования VR.

Как и всё новое, технологии виртуальной реальности вызывают у пользователей некоторые опасения. Ответить на их вопросы сегодня пытаются не только разработчики, но и учёные, которые проводят исследования о влиянии VR на самые разные аспекты человеческого здоровья. Из-за молодости технологии этих исследований на сегодняшний день немного и для того, чтобы сделать единогласный и обоснованный вывод о вреде или безопасности VR-технологии, должно пройти время. К настоящему моменту учёные не нашли признаков, свидетельствующих о негативном влиянии дисплеев виртуальной реальности на глаза или развития миопии, хотя некоторые изменения в глазах после долгого пребывания в VR всё же прослеживаются.

И несмотря на то, что вред VR для глаз не доказан, во избежание негативных последствий, важно внимательно читать инструкцию к устройствам и не пренебрегать рекомендациями о безопасном времени пребывания в VR, установленного производителем. При этом стоит отметить, что рекомендации производителей — это скорее подстраховка, а не обоснованные учёными ограничения.

Исследования о влиянии VR на ориентацию в пространстве и вестибулярный аппарат также находятся в зачаточной стадии и чаще всего основываются на субъективных оценках пользователей. При этом на сегодняшний день учёные предполагают, что иммерсивная среда в ряде случаев, действительно, может вызывать неприятные ощущения, тошноту или даже головные боли. Почти во всех описанных случаях симптомы исчезают после адаптации к устройству или же в течении нескольких минут после завершения VR-сеанса.

Над разработкой единых санитарно-эпидемиологических правил использования VR-очков работают и российские учёные. Например, активно работает с виртуальной реальностью Дальневосточный федеральный университет, а потому ученые из этого учебного заведения сейчас изучают влияние VR-оборудования на детей и подростков. Результатом исследования станут СанПиНы по использованию и безопасному времени нахождения в иммерсивной среде.

Вероятно, уже в скором времени учёные смогут определить безопасное время нахождения в VR и характеристики комфортного виртуального опыта для каждого возраста, а также вывести понятные каждому правила эксплуатации VR-очков.

Стоимость индивидуального обучения виртуальной реальности: полная стоимость виртуальной реальности, факторы стоимости и преимущества [2022]

При любом индивидуальном проекте обучения и развития будет сложно установить фиксированную цену для индивидуальной программы обучения виртуальной реальности (VR) . Если вам нужна индивидуальная программа обучения полной виртуальной реальности, она может стоить от 50 000 до 150 000 долларов США или более 90 004 .

Каждый день нашу команду спрашивают: «Сколько стоит индивидуальное обучение виртуальной реальности?» и нелегко дать только один ответ.

На стоимость индивидуального обучения виртуальной реальности (VR) может повлиять множество факторов: от производства контента и количества необходимых разработчиков до количества и качества гарнитур.

*Диапазон стоимости является общей оценкой; каждая программа обучения уникальна, и стоимость может варьироваться. Пожалуйста, запросите профессиональное предложение для более конкретных и надежных затрат.

В этой статье будет рассмотрен диапазон стоимости индивидуальных проектов полного обучения виртуальной реальности и разобраны факторы, влияющие на стоимость полного обучения виртуальной реальности.

 

Что такое полное обучение виртуальной реальности?

Обучение в виртуальной реальности (VR) создает искусственную среду, в которой пользователь полностью погружается в опыт. Через гарнитуру VR, настольный компьютер или мобильное устройство учащиеся попадают в виртуальный мир, созданный с помощью видео или в полностью смоделированной среде.

Full VR использует 6DoF (степени свободы) и позволяет учащемуся с гарнитурой свободно и органично перемещаться в виртуальной среде. Учащиеся могут наблюдать, ходить или передвигаться вокруг объектов, размещенных в окружающей среде, как если бы эти объекты были реальными.

От обучения техническим навыкам до обучения технике безопасности, индивидуальное полное обучение виртуальной реальности — отличный вариант для организаций, желающих дать своим сотрудникам интерактивный опыт обучения сложным объектам со свободной навигацией по виртуальному пространству.

В конечном счете, 6DoF идеально подходит для занятий, когда учащийся физически перемещается в виртуальном пространстве и напрямую взаимодействует с окружающей средой.

 

Каковы преимущества индивидуальной полной виртуальной реальности?

В то время как организации могут выбрать готовое решение для обучения виртуальной реальности, индивидуальное полное обучение виртуальной реальности имеет следующие уникальные преимущества: 

  • Идеально подходит для обучения техническим навыкам, требующим практической работы со сложными объектами
  • Предоставляет учащимся безопасную учебную среду, в которой они могут ходить и совершать сложные взаимодействия с объектами и людьми
  • Не влияет на реальное оборудование, сотрудников или клиентов
  • Масштабируемое обучение, которым можно легко управлять, отслеживать и назначать с помощью системы расширенной реальности (XRS)
  • Дает учащимся более захватывающий, реалистичный учебный процесс, который можно легко применить в реальной жизни

Подробнее: 3DoF против 6DoF Виртуальная реальность: что лучше?

 

 

Сколько стоит полное обучение виртуальной реальности?

Когда организация хочет впервые попробовать полное обучение виртуальной реальности, мы рекомендуем пилотную программу. Пилотный проект — отличный способ начать обучение в виртуальной реальности с относительно небольшими вложениями. Полная пилотная программа обучения виртуальной реальности обычно стоит от 40 000 до 60 000 долларов и более.

Эта пилотная программа — отличный способ начать работу, потому что вы можете:

  • Узнать о процессе разработки вашего VR-контента
  • Проверьте, хорошо ли восприняли технологию ваши учащиеся
  • Выясните, можно ли достичь целей обучения с помощью технологии виртуальной реальности
  • Узнайте, подходит ли обучение виртуальной реальности для нужд вашего бизнеса

Когда мы создаем пилотов для обучения виртуальной реальности, мы создаем их так, как будто они являются частью полной программы. Таким образом, у нас уже есть полезная отправная точка для построения, если полная программа получит поддержку. Когда вы будете готовы пройти пилотную программу или сразу приступить к разработке полной программы обучения виртуальной реальности, вы можете рассчитывать на среднюю сумму от 50 000 до 150 000 долларов США или больше.

 

 

Факторы стоимости, влияющие на стоимость индивидуального обучения полной виртуальной реальности

 

Учебный дизайн и программирование

Учебный дизайн, как правило, является первым шагом в разработке учебного контента для виртуальной реальности. Эта подготовительная работа обычно включает:

  • Определение целей обучения
  • Разработка скриптов
  • Отображение взаимодействия с виртуальной реальностью
  • Определение ключевых показателей

После разработки учебного процесса пришло время создать среду и запрограммировать взаимодействия. Для этого требуются два конкретных набора навыков. Во-первых, это возможность создавать 3D-ресурсы. 3D-художник спроектирует и создаст виртуальную среду, объекты и персонажей. Они также будут обрабатывать анимацию, текстурирование и все визуальные аспекты опыта.

Второй набор навыков — программист и/или разработчик игр. Эти люди работают с программами разработки виртуальной реальности, такими как Unity и Unreal Engine, а также с такими языками программирования, как C#, JavaScript и C++.

В зависимости от уровня квалификации это может стоить от 200 долларов США в час или более найма 3D-дизайнера и от 200 до 300 долларов США в час для разработчика или программиста. Уровень активности пользователя, количество взаимодействий, типы взаимодействий и виртуальные настройки влияют на количество необходимых часов.

Например, для программирования общей офисной среды для виртуальной реальности потребуется меньше часов, чем для полностью разработанной виртуальной среды склада.

Подробнее: Как создать оригинальный контент для виртуальной реальности: все, что вам нужно знать

 

Гарнитуры виртуальной реальности . Это означает, что вам нужно будет инвестировать в VR-гарнитуры для вашей программы. Самое замечательное в использовании гарнитур заключается в том, что вы можете дезинфицировать гарнитуры и делиться ими, перемещать их из одного места в другое и использовать их для нескольких программ обучения виртуальной реальности.

Вы можете рассчитывать на оплату продавцу стоимости гарнитуры ( 750–1400 долларов или более ) плюс стоимость установки и доставки ( 150–200 долларов за гарнитуру ). Работа с поставщиком поможет вам заключить более выгодную сделку и обеспечить правильную работу ваших гарнитур по прибытии.

Популярные гарнитуры виртуальной реальности и их стоимость для предприятий включают:

  • Oculus (Meta) Quest 2 — 799 долларов США
  • Пико Нео 3 – 699 долл. США
  • VIVE Фокус 3 – $1300

Кроме того, организации могут использовать картонные гарнитуры в качестве более масштабируемой и недорогой альтернативы вводному полному обучению виртуальной реальности. Эти гарнитуры стоят от 7,00 до 12,00 долларов США , могут быть полностью фирменными и использоваться со смартфонами ваших сотрудников.

 

Система расширенной реальности

Если в вашей учебной программе есть VR-контент, вам понадобится способ управления этим контентом, а это значит, что вам понадобится система расширенной реальности (XRS). Подобно LMS, XRS поможет вам управлять, развертывать, отслеживать и измерять результаты обучения в виртуальной реальности.

При любой системе управления ваша цена будет зависеть от количества ваших лицензий, в данном случае одна лицензия на гарнитуру. Вы можете рассчитывать на оплату от 20 до 30 долларов США в месяц за лицензию плюс потенциальную базовую плату за портал XRS. Имейте в виду, что при подписке на программное обеспечение, такой как XRS, экономия за счет масштаба означает, что чем больше гарнитур у вас есть в системе, тем меньше вы платите за гарнитуру.

 

Стоит ли оно того?

Итак, у вас есть это — средняя стоимость индивидуального полного обучения виртуальной реальности колеблется от От 50 000 до 150 000 долларов США или более за проект .

Важно помнить, что в зависимости от вашего поставщика, контента и масштаба эти цены будут различаться. Хотите начать дискуссию о возможном индивидуальном полном обучении виртуальной реальности в вашей организации? Свяжитесь с экспертом из нашей команды или закажите демонстрацию виртуальной реальности уже сегодня!

*Диапазон стоимости является общей оценкой; каждая программа обучения уникальна, и стоимость может варьироваться. Пожалуйста, запросите профессиональное предложение для более конкретных и надежных затрат.

 

Сколько стоят гарнитуры виртуальной реальности? Сравнение цен (2022 г.

) — Smart Glasses Hub

У тех, кто только знакомится с миром виртуальной реальности, может возникнуть множество разных вопросов об этой популярной технологии. Цель этой статьи — помочь вам узнать, какие существуют различные гарнитуры виртуальной реальности и сколько они обычно стоят.

По состоянию на 2021 год самым дешевым способом окунуться в виртуальную реальность являются мобильные виртуальные гарнитуры (цены от ~10 до ~100 долларов). Из категории автономных VR-гарнитур Oculus Quest 2 (~ 300 $ ) — безусловно, самый популярный (и, возможно, лучший) продукт на рынке. Гарнитуры, привязанные к ПК, начинаются от ~300-400 долларов (Samsung Odyssey+, Oculus Rift S) и доходят до 1000 долларов за продукты высокого класса (Valve Index, HTC Vive Pro, Pimax 8K X) .

Далее я кратко объясню, какие типы гарнитур виртуальной реальности доступны, и перечислю некоторые из наиболее популярных продуктов для каждой категории.

Мобильные гарнитуры виртуальной реальности

Цена : от 10 до 100 долларов США +

Для работы мобильных наушников, как следует из названия, требуется мобильный телефон. Вы подключаете свой мобильный телефон к мобильной виртуальной гарнитуре (в которой есть специальный слот для телефона), а затем воспроизводите контент со своего телефона.

Гарнитура виртуальной реальности со специальными линзами превращает обычный 2D-контент в захватывающий 180/360-градусный опыт. Помимо мультимедийного контента, вы также можете играть с ним в несколько очень простых игр.

Samsung Gear VR (Изображение предоставлено Wareable)

Чтобы получить обзор различных доступных мобильных VR-гарнитур, вы можете, например, просмотреть списки мобильных VR-продуктов на Amazon. Цены обычно начинаются от 10$ и доходят до 100$+.

Однако правда в том, что, хотя идея мобильной виртуальной реальности была многообещающей в какой-то момент, сейчас она, по сути, близится к смерти. Если у вас есть способный телефон и вы хотите попробовать его для развлечения, тогда вперед (по крайней мере, до тех пор, пока он не будет поддерживаться). Тем не менее, я лично рекомендую вам выбрать автономную гарнитуру Oculus Go, если вы хотите познакомиться с виртуальной реальностью.

Автономные VR-гарнитуры

Цена: от 150$ до ~400$

Следующая категория, которую мы рассмотрим, это автономные VR-гарнитуры. Для работы этих устройств не требуется мобильный телефон, ПК или игровая консоль — все необходимое аппаратное и программное обеспечение встроено в саму гарнитуру.

Самым большим преимуществом автономных VR-гарнитур является удобство и простота использования. Вы просто надеваете гарнитуру, нажимаете кнопку питания и практически готовы к работе. Недостатком является то, что доступно меньше контента, и он может быть «настроен» из-за аппаратных возможностей (вы просто не можете упаковать все высокотехнологичные технологии внутри гарнитуры).

На данный момент есть только два автономных VR-шлема, заслуживающих вашего внимания. Давайте кратко рассмотрим их обоих.

Oculus Go

Цена: ~150$ на момент написания (уточните последнюю цену)

Oculus Go — это виртуальная гарнитура начального уровня, позволяющая получить первое представление о том, что такое виртуальная реальность. Устройство идеально подходит, например, для просмотра различных 180/360-градусных видеороликов и 3D-фильмов. Вы также можете играть с ним в некоторые из более простых VR-игр.

Гарнитура Oculus Go VR с одним контроллером

Однако с Oculus Go вы не можете получить «настоящий опыт виртуальной реальности», потому что гарнитура способна отслеживать только вращение вашей головы (и контроллера), но не положение в комнате (посмотрите это видео, чтобы лучше понять ограничение).

Дополнительная информация: Обзор Oculus Go | Страница продукта

Oculus Quest

Цена: ~400$ на момент написания (уточните последнюю цену)

Oculus Quest — гарнитура, которая помогла сделать виртуальную реальность более доступной для более широкой аудитории. Для этого есть две основные причины. Во-первых, это автономное устройство с отслеживанием в масштабе комнаты, которое очень удобно и просто в использовании. Во-вторых, цена наконец-то вышла на уровень, на котором она становится приемлемой и для обычного покупателя, не являющегося энтузиастом.

Oculus Quest VR Headset

Самое главное, однако, что Oculus Quest — это просто отличный продукт, который нравится покупателям. Это стало причиной его успеха в 2019 году и далее. Если у вас нет подходящего ПК, то Oculus Quest в настоящее время является гарнитурой виртуальной реальности, позволяющей открыть весь спектр возможностей виртуальной реальности по разумной цене.

Дополнительная информация: Oculus Quest обзор | Официальная страница продукта

Гарнитуры виртуальной реальности с привязкой к ПК

Цена: начиная с ~300$ и до ~1000$+

Для работы VR-шлемов, привязанных к ПК, требуется подключенный ПК. Здесь виртуальная гарнитура в основном выступает в качестве дисплея и обеспечивает взаимодействие (контроллеры, отслеживание и т. д.), в то время как фактический контент генерируется вашим ПК.

Понятно, что ПК может обладать гораздо большей вычислительной мощностью, чем, например, может быть встроена в автономную гарнитуру виртуальной реальности. Обычно это означает, что игры для ПК VR имеют лучшую визуализацию и в целом способны справиться с большей сложностью.

Основным недостатком является то, что вам нужен мощный ПК, чтобы делать что-либо с этими типами VR-гарнитур. Во-вторых, будет провод (подключенный к ПК), который может иногда мешать и портить погружение.

Подключенные к ПК VR-гарнитуры часто выбирают геймеры-энтузиасты, которые хотят иметь доступ к большому количеству VR-игр (в автономных гарнитурах доступно меньше контента) с наилучшей графикой. Давайте теперь рассмотрим некоторые из наиболее популярных гарнитур виртуальной реальности, привязанных к ПК, и их цены.

Samsung Odyssey+

Цена: часто продается по цене ~300$ (уточните последнюю цену)

Samsung Odyssey+ — одна из самых дешевых VR-гарнитур с привязкой к ПК, которые вы можете купить. Однако низкая цена никоим образом не означает, что это плохой продукт. На самом деле все совсем наоборот. На мой взгляд, у Odyssey+ одно из лучших соотношений цены и качества среди всех гарнитур на рынке.

Гарнитура предлагает великолепные визуальные эффекты с четким изображением и яркими цветами. Благодаря встроенной системе слежения за камерами он быстро настраивается и прост в использовании. Если у вас есть совместимый ПК и вы хотите получить приличный опыт виртуальной реальности (мультимедиа и игры) без перерасхода средств, Odyssey+ — отличный выбор.

Дополнительная информация: Обзор Samsung Odyssey+

Oculus Rift S

Цена: ~400$ на момент написания (проверьте последнюю цену) уровень рынка VR-шлемов, привязанных к ПК. Хотя это немного дороже, в целом это более изысканный и отполированный продукт.

Rift S имеет четкое изображение, точную систему слежения наизнанку, очень удобен в ношении и оснащен двумя эргономичными и простыми в использовании контроллерами. Последние три функции также являются его основными преимуществами перед гарнитурой Odyssey+.

Дополнительная информация: Обзор Oculus Rift S | Официальная страница продукта. посчитал их недостаточными. Это для людей, которые просто хотят получить лучший опыт виртуальной реальности, который можно купить за деньги.

С Valve Index вы получаете превосходное общее визуальное качество и инновационные накладные контроллеры, которые вам не нужно держать в руках (и которые также имитируют движения ваших пальцев). Кроме того, гарнитура очень удобна, имеет отличную систему отслеживания и качественный встроенный звук. В целом, Index — это отличный и отточенный комплект VR-гарнитуры.

Дополнительная информация: Обзор индекса клапана  | Официальная страница продукта

Другие VR-гарнитуры, привязанные к ПК

  • Oculus Rift — Oculus Rift 1-го поколения, который медленно устаревает, но в целом остается хорошей VR-гарнитурой, которую стоит купить, если вы можете найти ее в продаже за 300 $ или меньше (проверьте последние цены)
  • HTC Vive Cosmos — серия VR-гарнитур, привязанных к ПК, по цене от ~700$.
    Сколько стоит виртуальный шлем: VR очки виртуальной реальности для компьютера купить. Цены на VR шлема для ПК и консолей в интернет-магазине Virtulity Club
Scroll to top